根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成 N 个只包含 1 个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下 1 个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数 N (≤100);随后一行给出原始序列的 N 个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第 1 行中输出Insertion Sort
表示插入排序、或Merge Sort
表示归并排序;然后在第 2 行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行首尾不得有多余空格。
输入样例 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
输出样例 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
输入样例 2:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6
输出样例 2:
Merge Sort
1 2 3 8 4 5 7 9 0 6
分析:
这道题整不会了,代码是根据柳诺的这篇文章写的。等之后再来修改自己思路。
代码:
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
int N;
cin >> N;
int origin[101], progress[101], i, j;
for (int i = 0; i < N; i++)
cin >> origin[i];
for (int i = 0; i < N; i++)
cin >> progress[i];
for (i = 0; i < N - 1 && progress[i] <= progress[i + 1]; i++);
for (j = i + 1; origin[j] == progress[j] && j < N; j++);
if (j == N) {
cout << "Insertion Sort" << endl;
sort(origin, origin + i + 2);
} else {
cout << "Merge Sort" << endl;
int k = 1, flag = 1;
while (flag) {
flag = 0;
for (i = 0; i < N; i++) {
if (origin[i] != progress[i]) {
flag = 1;
}
}
k *= 2;
for (i = 0; i < N / k; i++)
sort(origin + i * k, origin + (i + 1) * k);
sort(origin + N / k * k, origin + N);
}
}
for (j = 0; j < N; j++) {
if (j != 0)
cout << " ";
cout << origin[j];
}
return 0;
}