K-近邻算法

1、简而言之:根据你的邻居来推断你的类别
定义
2、距离公式(确定邻居)
曼哈顿距离公式
3、K值取的过小,容易受到异常点的影响
K值取的过大,容易受到样本不均衡的影响

4、API
API
n_neighbours即K值
5、总结
总结
ex_1

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


def knn_iris():
    '''
    用KNN算法对鸢尾花进行分类
    :return:
    '''
    # 1)获取数据
    iris = load_iris()
    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)

    # 3)特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4)KNN短发预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)
    # 有了模型
    # 5)模型评估
    # 方法1:直接对比真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict: \n", y_predict)
    print("直接对比真实值和预测值: \n", y_test == y_predict)

    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率:\n", score)


if __name__ == '__main__':
    knn_iris()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值