k均值聚类(matlab)

%%
% k均值聚类

load fisheriris

X = meas(:,3:4)   %meas是一个矩阵,每一行是一个样本,每一列代表一个特征,选择了所有行,并选择了第三列到第四列的数据
size(X)

figure;   %创建一个新的图形窗口

plot(X(:,1),X(:,2),'k*','MarkerSize',5);


rng(1);

[inx,C] = kmeans(X,3)   %inx是分类的索引1-3,C是质心坐标



x1 = min(X(:,1)):0.01:max(X(:,1));   %min(X(:,1))表示X的第一列中的最小值,1,591
x2 = min(X(:,2)):0.01:max(X(:,2));

[x1G,x2G] = meshgrid(x1,x2);   %x1G的每一行都是x1向量的复制  x2G的每一列都是x2向量的复制

XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot

idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);


figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
    [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)'; 
legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;

%%
rng default

X = [randn(100,2)*0.75 + ones(100,2);
    randn(100,2)*0.5 - ones(100,2)];     %在垂直方向上连接两个随机矩阵


figure;
plot(X(:,1),X(:,2), '.');


opts = statset('Display','final');

[idx,C] = kmeans(X,2,'Distance','cityblock',...
    'Replicates',5,'Options',opts);


figure;
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(C(:,1),C(:,2),'kx',...
     'MarkerSize',15,'LineWidth',3) 
legend('Cluster 1','Cluster 2','Centroids',...
       'Location','NW')
title 'Cluster Assignments and Centroids'
hold off

%%




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值