[蓝桥杯][算法训练VIP]传纸条

[蓝桥杯][算法训练VIP]传纸条

题目描述

小渊和小轩是好朋友也是同班同学,他们在一起 总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运 的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。 从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然 数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。 现在,请你帮助小渊和小轩找到这样的两条路径。

数据规模和约定
100%的数据满足:1< =m,n< =50

输入

输入第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1< =m,n< =50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出

输出一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

样例输入

3  3 
0  3  9 
2  8  5 
5  7  0 

样例输出

34

动态规划,用四维数组dp[i][j][x][y]来表示两条路线,因为来回两条路线,转换思维.
答案就是dp[n][m][n][m]
因为到达n,m只能由上或者左来所以存在4种情况
上,上 = dp[i-1][j][x-1][y]
上,左 = dp[i-1][j][x][y-1]
左,上 = dp[i][j-1][x-1][y]
左,左 = dp[i][j-1][x][y-1]
题目要求求最大值,所以在这4种情况里面找最大值!
找到最大值:最大值 + a[i][j]
由于一个人只能传一次小字条,所以当i != x && j != y的时候:最大值 + a[x][y].

AC代码:

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;

int dp[55][55][55][55];
int a[55][55];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin>>a[i][j];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            for(int x=1;x<=n;x++){
                for(int y=1;y<=m;y++){
                    int sum1 = max(dp[i-1][j][x-1][y],dp[i-1][j][x][y-1]);
                    int sum2 = max(dp[i][j-1][x-1][y],dp[i][j-1][x][y-1]);
                    dp[i][j][x][y] = max(sum1,sum2) + a[i][j];
                    if(i != x && j != y)
                        dp[i][j][x][y] += a[x][y];
                }
            }
        }
    }
    cout<<dp[n][m][n][m]<<endl;
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值