vLLM显存优化

在使用 vLLM 框架进行大模型推理时,为了最大程度地减少 GPU 显存的占用,可以从以下几个方面调整参数和配置:

1. 调整 max_batch_size 参数

  • max_batch_size:这是批处理的最大大小。较大的批处理尺寸会占用更多的显存。如果显存有限,可以降低 max_batch_size
  • 建议:从小的 batch_size 开始,逐步调高,找到合适的平衡点。

2. 使用 offload 功能

  • vLLM 支持将部分张量或模型参数从 GPU 显存转移到 CPU 内存中,以减少显存的占用。这可以通过 offload 功能实现。
  • offload_weights:如果模型的参数很大,可以启用权重的 offloading,将模型参数存储在 CPU 内存中,只有在需要时才将部分参数加载到 GPU。
  • offload_activations:同样地,激活值(即推理过程中产生的中间结果)也可以进行 offloading。

建议:尝试启用 offload_weightsoffload_activations,并观察显存使用情况的变化。

3. 使用梯度累积(Gradient Checkpointing)

虽然梯度累积一般用于训练,但也可以在推理过程中应用类似的技术,通过重新计算部分中间结果来减少显存占用。在 vLLM 中,使用梯度检查点的策略会大幅减少中间激活存储在显存中的需求。

建议:如果模型支持 checkpointing,启用该功能以减少内存使用。

4. 减小模型规模或使用量化模型

如果可能,考虑使用量化后的模型,如 8-bit 或 4-bit 量化,这样可以显著降低显存的占用。

  • vLLM 支持加载和推理不同格式的模型,量化模型会用更少的显存来存储权重。

建议:尝试加载量化后的模型(8-bit 或 4-bit),这可以在减少显存使用的同时维持模型的性能。

5. 降低生成序列长度

  • 生成序列的长度越长,模型需要存储和计算的中间结果越多,从而增加显存占用。如果可能的话,可以减少推理时生成的 token 数量。
  • 例如,减少 max_lengthmax_new_tokens 的值。

建议:根据需求,适当调整 max_new_tokens 参数,减少生成长度以降低显存占用。

6. 优化显存分配(Memory Allocation)

  • 在某些情况下,可以使用 torch.cuda.empty_cache() 来手动释放不再需要的显存,防止显存碎片化问题导致的额外占用。
  • 你可以定期调用该方法来确保没有多余的显存占用。

7. 使用 fp16 模式

  • 如果硬件支持,可以使用混合精度(fp16)模式来减少显存占用。vLLM 支持在推理过程中启用混合精度。

建议:尝试将模型权重和激活切换为 fp16 格式,这样每个浮点数只占用一半的显存。

8. 分布式推理

  • 如果显存仍然不足,可以考虑使用多个 GPU 来分布式推理。vLLM 支持多 GPU 模式,可以根据模型规模和可用资源配置多个 GPU。

建议:如果有多块 GPU,使用分布式推理将模型切分到不同的设备上,以减少单卡的显存压力。


配置示例

假设你使用的是 Hugging Face 的模型,可以通过以下代码启动 vLLM 并减少显存使用:

from vllm import LLM

# 配置 LLM 模型
llm = LLM(model="huggingface/your-model-name",
          offload_weights=True,        # 启用权重的 offload
          offload_activations=True,    # 启用激活值的 offload
          dtype="fp16",                # 启用混合精度
          max_batch_size=1,            # 控制 batch size
          max_new_tokens=50)           # 控制生成序列长度

这样配置之后,你可以尝试不同的 max_batch_sizemax_new_tokens,同时观察显存的使用情况。


通过这些调整和优化,可以显著减少 vLLM 框架在 GPU 上的显存占用。在实际应用中,你可以根据任务的需求逐步调整这些参数,找到性能和显存消耗的最佳平衡点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值