北京大学任艳霞老师 概率统计(A) 统计学部分总结 (二)估计

估计

最大似然估计

在某一分布类内,似然函数为
L ( x ⃗ , θ ) = Π i = 1 n p θ ( x i ) L(\vec{x},\theta) = \Pi^{n}_{i=1} p_{\theta}(x_i) L(x ,θ)=Πi=1npθ(xi)
L ( x ⃗ , θ ) L(\vec{x},\theta) L(x ,θ)值会随 θ \theta θ的选取变化.
最大似然估计认为,若有:
L ( x ⃗ , θ 0 ) ≥ L ( x ⃗ , θ ) , ∀ θ ∈ Θ , θ 0 ∈ Θ L(\vec{x},\theta_0) \geq L(\vec{x},\theta) , \forall \theta \in \Theta ,\theta_0 \in \Theta L(x ,θ0)L(x ,θ),θΘ,θ0Θ
θ \theta θ的估计值应取 θ ^ = θ 0 \hat{\theta} = \theta_0 θ^=θ0.

矩估计

由总体分布求出真实矩 m k ( θ ) = E X k m_k(\theta) = EX^k mk(θ)=EXk

由数据取平均,求出样本矩 a k = 1 n Σ x k a_k = \frac{1}{n}\Sigma x^k ak=n1Σxk

根据大数律, lim ⁡ n → ∞ a k = m k ( θ ) \lim_{n\to \infty} a_k = m_k(\theta) limnak=mk(θ)

由此,可以反解出 θ ^ = T ( x ⃗ ) \hat{\theta} = T(\vec{x}) θ^=T(x )

估计的无偏性与优良性

评价估计好坏的两条标准
E θ ( θ ^ ) = θ E_\theta(\hat{\theta}) = \theta Eθ(θ^)=θ则称估计是无偏的.
例如,对于估计
μ ^ = X ˉ \hat{\mu} = \bar{X} μ^=Xˉ
E μ ( X ˉ ) = 1 n Σ E ( X ) = 1 n × n × μ = μ E_{\mu}(\bar{X}) = \frac{1}{n}\Sigma E(X) = \frac{1}{n}\times n \times \mu = \mu Eμ(Xˉ)=n1ΣE(X)=n1×n×μ=μ
所以具有无偏性.

在满足无偏性的前提下,可以进一步比较估计的优良性.
V a r θ ( θ ^ ) Var_\theta(\hat{\theta}) Varθ(θ^)越小则称估计越优良.

UMVUE与指数族分布

在所有无偏估计中,优良性最好的估计称为,最小方差无偏估计(UMVUE)

求UMVUE比较复杂,但对于指数族分布来说,有简单的方法.

满足如下形式的分布称为指数族分布:

p θ ( x ) = s ( θ ) h ( x ) e Σ i c i ( θ ) t i ( x ) p_{\theta}(x) = s(\theta)h(x)e^{\Sigma_i c_i(\theta)t_i(x)} pθ(x)=s(θ)h(x)eΣici(θ)ti(x)
对于指数族分布,可以证明,若
θ ^ = ϕ ( T 1 ( x ⃗ ) , T 2 ( x ⃗ ) . . . ) \hat{\theta} = \phi(T_1(\vec{x}),T_2(\vec{x})...) θ^=ϕ(T1(x ),T2(x )...)
具有无偏性,则其为UMVUE.
其中:
T i ( x ⃗ ) = Σ j t i ( x j ) T_i(\vec{x}) = \Sigma_j t_i(x_j) Ti(x )=Σjti(xj)

相合性与渐进分布

相合性: ∀ θ , lim ⁡ n → ∞ θ ^ → P θ g ( θ ) \forall \theta,\lim_{n \to \infty}\hat{\theta}\to^{P_\theta} g(\theta) θ,limnθ^Pθg(θ)

可以证明,矩估计具有相合性

渐进分布:

由CLT:
n ( X ˉ − μ ) ∼ N ( 0 , σ 2 ) , n → ∞ , X 1 , X 2 . . . i i d \sqrt{n}(\bar{X}-\mu)\sim N(0,\sigma^2),n\to \infty,X_1,X_2... iid n (Xˉμ)N(0,σ2),n,X1,X2...iid
Δ \Delta Δ方法:

n ( T n − θ ) ∼ N ( 0 , σ 2 ) \sqrt{n}(T_n-\theta)\sim N(0,\sigma^2) n (Tnθ)N(0,σ2)
h ′ ( θ ) = a , a ≠ 0 h^{'}(\theta) = a,a\neq0 h(θ)=a,a=0
则,
n ( h ( T n ) − h ( θ ) ) ∼ N ( 0 , a 2 σ 2 ) \sqrt{n}(h(T_n)-h(\theta))\sim N(0,a^2\sigma^2) n (h(Tn)h(θ))N(0,a2σ2)

置信区间与置信限

枢轴量

h = h ( x ⃗ , g ( θ ) ) h = h(\vec{x},g(\theta)) h=h(x ,g(θ))为枢轴量,当:

  1. h分布与 θ \theta θ无关;
  2. h不含讨厌参数;

可以通过枢轴量h在一定置信度下的分布范围,进而解出 θ \theta θ范围.

正态情形

μ \mu μ
已知 σ 2 \sigma^2 σ2

h = n ( X ˉ − μ ) σ ∼ Z h = \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim Z h=σn (Xˉμ)Z
由:
P ( ∣ h ∣ ≤ x ) = 1 − α P(|h|\leq x) = 1-\alpha P(hx)=1α
得,
μ ∈ [ X ˉ − σ n x , X ˉ + σ n x ] \mu \in [\bar{X}-\frac{\sigma}{\sqrt{n}}x,\bar{X}+\frac{\sigma}{\sqrt{n}}x] μ[Xˉn σx,Xˉ+n σx]

未知 σ 2 \sigma^2 σ2

h = n ( X ˉ − μ ) s x ∼ t ( n − 1 ) h = \frac{\sqrt{n}(\bar{X}-\mu)}{s_x} \sim t(n-1) h=sxn (Xˉμ)t(n1)
由:
P ( ∣ h ∣ ≤ x ) = 1 − α P(|h|\leq x) = 1-\alpha P(hx)=1α
得,
μ ∈ [ X ˉ − s x n x , X ˉ + s x n x ] \mu \in [\bar{X}-\frac{s_x}{\sqrt{n}}x,\bar{X}+\frac{s_x}{\sqrt{n}}x] μ[Xˉn sxx,Xˉ+n sxx]

σ 2 \sigma^2 σ2

h = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) h = \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) h=σ2(n1)S2χ2(n1)
P ( h ≥ x ) = 1 − α P(h\geq x) = 1-\alpha P(hx)=1α
σ 2 ≤ ( n − 1 ) S 2 x \sigma^2\leq \frac{(n-1)S^2}{x} σ2x(n1)S2

假设检验

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值