Sherpa-ONNX:说话人识别与语音识别自动开启(VAD)+ Python API 完整指南

介绍

Sherpa-ONNX 是一个基于 ONNX 的轻量级语音识别框架,支持多种语音处理任务,包括说话人识别(Speaker Recognition)和自动语音识别(Automatic Speech Recognition, ASR)。在本指南中,我们将重点介绍如何使用 Sherpa-ONNX 进行说话人识别、自动开启语音识别(VAD)以及如何通过 Python API 进行操作。

安装环境

在开始之前,确保你的系统上已安装以下软件和库:

  • Python 3.7 或以上版本
  • pip(Python 包管理工具)
  • ONNX Runtime(用于运行 ONNX 模型)

步骤 1:安装必要的库

在终端中运行以下命令以安装 Sherpa-ONNX 和其他依赖库:

pip install numpy onnx onnxruntime
pip install sherpa-onnx

步骤 2:模型准备

Sherpa-ONNX 需要预训练模型以进行说话人识别和语音识别。你可以从官方 GitHub 仓库下载相应的模型文件。

# 假设模型文件存储在 models/ 目录下
mkdir models
cd models
# 下载说话人识别模型
wget [说话人识别模型下载链接]
# 下载语音识别模型
wget [语音识别模型下载链接]

步骤 3:自动语音识别(VAD)

VAD(Voice Activity Detection)是语音识别系统的一个重要组成部分,用于判断语音信号的存在。Sherpa-ONNX 提供了内置的 VAD 功能,可以自动检测音频信号。

示例代码:自动开启语音识别

import numpy as np
import sherpa_onnx

# 加载说话人识别模型
speaker_model = sherpa_onnx.SpeakerModel(model_path="models/speaker_model.onnx")
# 加载语音识别模型
asr_model = sherpa_onnx.ASRModel(model_path="models/asr_model.onnx")

# 加载音频文件
audio_path = "path/to/audio/file.wav"

# 使用 VAD 检测音频中的语音部分
vad_segments = speaker_model.detect_speech(audio_path)

for segment in vad_segments:
    start_time, end_time = segment
    print(f"Detected speech from {start_time}s to {end_time}s")
    
    # 提取音频片段
    audio_segment = extract_audio_segment(audio_path, start_time, end_time)
    
    # 进行说话人识别
    speaker_id = speaker_model.predict(audio_segment)
    print(f"Identified speaker: {speaker_id}")

    # 进行语音识别
    transcription = asr_model.transcribe(audio_segment)
    print(f"Transcription: {transcription}")

步骤 4:音频处理函数

为了提取音频片段,你可以使用 pydub 库进行音频处理:

pip install pydub

下面是提取音频片段的函数实现:

from pydub import AudioSegment

def extract_audio_segment(audio_path, start_time, end_time):
    audio = AudioSegment.from_wav(audio_path)
    return audio[start_time * 1000:end_time * 1000]  # 转换为毫秒

步骤 5:运行代码

运行你的 Python 脚本,观察控制台输出。你将看到检测到的语音片段及其对应的说话人识别结果和语音识别转录内容。

结果展示

  • 说话人识别:系统将输出识别到的说话人 ID。
  • 语音识别:系统将输出从音频中转录出的文本内容。

总结

通过使用 Sherpa-ONNX,我们成功地实现了说话人识别和语音识别的自动开启。该框架提供了简单而强大的 API,方便我们在实际应用中进行语音处理。希望本指南能帮助你快速上手并深入探索语音识别技术。

进一步学习

  • 音频数据集:你可以使用公开的音频数据集进行模型训练和测试。
  • 模型优化:探索如何优化模型以提高识别准确率和速度。
### 使用 Sherpa-ONNX 实现说话识别 Sherpa-ONNX 提供了一套完整的解决方案来执行说话识别任务。该框架不仅能够处理传统的语音信号输入,还集成了自动语音活动检测(VAD),从而提高了实际应用中的鲁棒性和效率[^1]。 #### 安装依赖项 为了开始使用 Sherpa-ONNX 进行说话识别,需先安装必要的软件包: ```bash pip install -r requirements.txt ``` 这一步骤会下载并配置所有必需的Python库,确保开发环境准备就绪。 #### 加载预训练模型 对于说话识别而言,通常采用预先训练好的神经网络模型来进行特征提取。这些模型可以从官方仓库获取,并加载至内存中以便后续调用: ```python import sherpa_onnx config = { "model": "./pretrained_model.onnx", } recognizer = sherpa_onnx.SherpaOnnx(config) ``` 上述代码片段展示了如何指定路径读取 `.onnx` 文件格式存储的模型权重数据[^3]。 #### 执行说话识别 一旦完成了初始化工作之后,就可以利用 `recognizer` 对象对音频样本实施分析了。这里给出一段简单的例子说明怎样从本地文件读入待测录音片段,并将其送入算法计算相似度得分: ```python audio_file_path = 'path/to/your/audio.wav' result = recognizer.recognize(audio_file=audio_file_path) print(f"Recognition result: {result}") ``` 这段脚本实现了基本的功能——给定一个 WAV 格式的单声道 PCM 编码的声音文件作为输入参数传递给 recognize 方法后返回匹配结果字符串表示形式的结果。 当涉及到连续流式采集自麦克风的数据时,则可参照如下方式调整程序逻辑结构以适应不同场景需求: ```python from sounddevice import InputStream import numpy as np def callback(indata, frames, time, status): global recognizer if any(status): print('Error:', status) samples = indata[:, :].reshape(-1).astype(np.float32) res = recognizer.decode(samples=samples) print(res) with InputStream(callback=callback): input() ``` 此部分代码定义了一个回调函数用于接收来自硬件设备传来的原始采样点序列,并即时交给解码器处理得到最终输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只蜗牛儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值