空间平滑算法详解

引入

  MUSIC算法能有效运行的前提是矩阵 R S R_S RS是非奇异的,即各条传播路径不相干。如果L路到达信号中存在Q路相干信号(Q≤L),则通过MUSIC算法能被检测到的信号数量为L-Q+1,能被解出的信号数量为L-Q。

  信号 s ( t ) s(t) s(t) 的协方差矩阵 R S R_S RS的非奇异性是 MUSIC 算法有效运行 的关键。为了在存在相干信号的情况下保证 R S R_S RS的非奇异性, 解决 MUSIC 算法失效的问题,需要使用空间平滑算法。

空间平滑算法

  如图所示, 首先, 将由 M M M 根接收天线构成的线性天线阵列划分为多个相互重叠的子阵列, 假设每个子阵列中包含的天线数量为 P P P, 则子阵列的数量为 M − P + 1 M-P+1 MP+1, 其中第一个子阵列包含的天线子集为 { 1 , 2 , … , P } \{1,2, \ldots, P\} {1,2,,P}, 第二个子阵列包含的天 线子集为 { 2 , 3 , … , P + 1 } \{2,3, \ldots, P+1\} {2,3,,P+1} 等, 直到第 M − P + 1 M-P+1 MP+1 个子阵列包含的天线子集为 { M − P , M − \{M-P, M- {MP,M P + 1 , … , M } ∘ P+1, \ldots, M\}_{\circ} P+1,,M}
在这里插入图片描述
  第 p p p 个子阵列的接收信号向量 r p ( t ) r_{p}(t) rp(t) :
r p ( t ) = A p s ( t ) + N p ( t ) r_{p}(t)=A_{p} s(t)+N_{p}(t) rp(t)=Aps(t)+Np(t)
  其中 A p A_{p} Ap 是第 p p p 个阵列的方向矩阵, N p ( t ) N_{p}(t) Np(t) 是第 p p p 个子阵列的噪声向量, s ( t ) s(t) s(t) L L L 路信号。为了体现子阵列之间的关系, 推导出空间平滑算法, 构建对角线矩阵 D D D :
D = diag ⁡ { e − j 2 π f 0 d ⋅ sin ⁡ θ 1 / c , e − j 2 π f 0 d ⋅ sin ⁡ θ 2 / c , … , e − j 2 π f 0 d ⋅ sin ⁡ θ L / c } D=\operatorname{diag}\left\{e^{-j 2 \pi f_{0} d \cdot \sin \theta_{1} / c}, e^{-j 2 \pi f_{0} d \cdot \sin \theta_{2} / c}, \ldots, e^{-j 2 \pi f_{0} d \cdot \sin \theta_{L} / c}\right\} D=diag{ej2πf0dsinθ1/c,ej2πf0dsinθ2/c,,ej2πf0dsinθL/c}
A p = A 1 D ( p − 1 ) A_{p}=A_{1} D^{(p-1)} Ap=A1D(p1), 其中 A 1 A_{1} A1 为第一个子阵列的方向矩阵, D ( p − 1 )  为:  D^{(p-1) \text { 为: }} D(p1) 
D ( p − 1 ) = diag ⁡ { e − j 2 π f 0 ( p − 1 ) d ⋅ sin ⁡ θ 1 / c , e − j 2 π f 0 ( p − 1 ) d ⋅ sin ⁡ θ 2 / c , … , e − j 2 π f 0 ( p − 1 ) d ⋅ sin ⁡ θ L / c } D^{(p-1)}=\operatorname{diag}\left\{e^{-j 2 \pi f_{0}(p-1) d \cdot \sin \theta_{1} / c}, e^{-j 2 \pi f_{0}(p-1) d \cdot \sin \theta_{2} / c}, \ldots, e^{-j 2 \pi f_{0}(p-1) d \cdot \sin \theta_{L} / c}\right\} D(p1)=diag{ej2πf0(p1)dsinθ1/c,ej2πf0(p1)dsinθ2/c,,ej2πf0(p1)dsinθL/c}
  此时 r p ( t ) r_{p}(t) rp(t) 可以改写为:
r p ( t ) = A 1 D ( p − 1 ) s ( t ) + N p ( t ) ( 1 ) r_{p}(t)=A_{1} D^{(p-1)} s(t)+N_{p}(t) \qquad (1) rp(t)=A1D(p1)s(t)+Np(t)(1)
  从(1)式可以看出, 每一个子阵列的接收信号向量均可写成同一方向矩阵的线性组合。第 p p p 个子阵列的接收信号 r p ( t ) r_{p}(t) rp(t) 的协方差矩阵可以推导出来:
R p = A 1 D ( p − 1 ) S D H ( p − 1 ) A 1 H + σ 2 I ( 2 ) R_{p}=A_{1} D^{(p-1)} S D^{H(p-1)} A_{1}^{H}+\sigma^{2} I \qquad (2) Rp=A1D(p1)SDH(p1)A1H+σ2I(2)
  其中 D H ( p − 1 ) D^{H^{(p-1)}} DH(p1) A 1 H A_{1}^{H} A1H 分别为 D ( p − 1 ) D^{(p-1)} D(p1) A 1 A_{1} A1 的共轭转置矩阵。

  计算出每个子阵列的协方差矩阵后, 定义空间平滑协方差矩阵 R ˉ \bar{R} Rˉ 为所有子阵列协方差矩阵的平均值:
R ˉ = 1 M − P + 1 ∑ p = 1 M − P + 1 R p ( 3 ) \bar{R}=\frac{1}{M-P+1} \sum_{p=1}^{M-P+1} R_{p} \qquad (3) Rˉ=MP+11p=1MP+1Rp(3)
  将公式(2)带入公式 (3) 后可得:
R ˉ = A 1 ( 1 M − P + 1 ∑ p = 1 M − P + 1 D ( p − 1 ) S D H ( p − 1 ) ) A 1 H + σ 2 I = A 1 S ˉ A 1 H + σ 2 I \bar{R}=A_{1}\left(\frac{1}{M-P+1} \sum_{p=1}^{M-P+1} D^{(p-1)} S D^{H(p-1)}\right) A_{1}^{H}+\sigma^{2} I=A_{1} \bar{S} A_{1}^{H}+\sigma^{2} I Rˉ=A1(MP+11p=1MP+1D(p1)SDH(p1))A1H+σ2I=A1SˉA1H+σ2I
  其中:
S ˉ = 1 M − P + 1 ∑ p = 1 M − P + 1 D ( p − 1 ) S D H ( p − 1 ) \bar{S}=\frac{1}{M-P+1} \sum_{p=1}^{M-P+1} D^{(p-1)} S D^{H(p-1)} Sˉ=MP+11p=1MP+1D(p1)SDH(p1)

  只要能证明 S ˉ \bar{S} Sˉ是非奇异的,便可以在存在相干信号的情况下,使用MUSIC算法。

  经推导,在存在相干信号的情况下,只要保证两个条件:
    ①子阵列天线数量大于信号数量 , M − P + 1 > L M-P+1>L MP+1>L
    ②子阵列数量大于信号数量这两个条件, P > L P>L P>L

  便能使用MUSIC算法有效地探测各路信号并求解各路信号AoA。综上,线性天线阵列需要的最少天线数量为 M = 2 L M=2L M=2L,即阵列天线数量至少要为传播路径数量的两倍,相比于传统MUSIC算法的情况,牺牲了一半的有效天线孔径。

  在室内环境下,多径是源信号经过障碍物折射、反射、散射产生的,理论上各条传播路径上的信号均是源信号的副本,它们拥有相同的频率和固定的相位差,因此室内静态多径信号都是相干的。

参考文献

[1] 陈浩翔. 基于Wi-Fi信道状态信息的室内定位算法研究[D].华南理工大学,2019.

更新ing……

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值