QAM(正交幅度调制)

1️⃣ 星座图

介绍QAM前,需要先来看看什么是星座图:

星座图是用于分析相移键控(PSK)、振幅键控(ASK)以及正交幅度调制(QAM)的工具

对于基于相位调制和幅度-相位调制的信号,调制后的调制信号可以表示为:
s ( t ) = A cos ⁡ ( 2 π f c t + ϕ ) s(t)=A\cos(2\pi f_ct+\phi) s(t)=Acos(2πfct+ϕ)
其中, A A A是信号幅度, f c f_c fc是载波频率, ϕ \phi ϕ是相位

利用三角恒等式:

cos ⁡ ( x + y ) = cos ⁡ ( x ) cos ⁡ ( y ) − sin ⁡ ( x ) sin ⁡ ( y ) \cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y) cos(x+y)=cos(x)cos(y)sin(x)sin(y)

2 π f c t 2\pi f_ct 2πfct ϕ \phi ϕ分别代入 x x x y y y,得:

s ( t ) = A [ cos ⁡ ( 2 π f c t ) cos ⁡ ( ϕ ) − sin ⁡ ( 2 π f c t ) sin ⁡ ( ϕ ) ] s(t)=A\left[\cos(2\pi f_ct)\cos(\phi)-\sin(2\pi f_ct)\sin(\phi)\right] s(t)=A[cos(2πfct)cos(ϕ)sin(2πfct)sin(ϕ)]

将公式整理为两部分:

s ( t ) = A cos ⁡ ( ϕ ) ⏟ I分量 ⋅ cos ⁡ ( 2 π f c t ) − A sin ⁡ ( ϕ ) ⏟ Q分量 ⋅ sin ⁡ ( 2 π f c t ) s(t)=\underbrace{A\cos(\phi)}_{\text{I分量}}\cdot\cos(2\pi f_ct)\underbrace{-A\sin(\phi)}_{\text{Q分量}}\cdot\sin(2\pi f_ct) s(t)=I分量 Acos(ϕ)cos(2πfct)Q分量 Asin(ϕ)sin(2πfct)

可以得到:

同相分量(I): I = A cos ⁡ ( ϕ ) I=A\cos(\phi) I=Acos(ϕ);正交分量(Q): Q = − A sin ⁡ ( ϕ ) Q=-A\sin(\phi) Q=Asin(ϕ)

因此调制信号可以表示为I-Q分量组合,星座点在I-Q平面上的坐标就是 ( I , Q ) (I,Q) I,Q
s ( t ) = I ⋅ cos ⁡ ( 2 π f c t ) + Q ⋅ sin ⁡ ( 2 π f c t ) s(t)=I\cdot\cos(2\pi f_ct)+Q\cdot\sin(2\pi f_ct) s(t)=Icos(2πfct)+Qsin(2πfct)

上面介绍的是如何从调制信号映射到星座点

我拿4PSK(QPSK)举个例子,QPSK 是四进制相移键控,通过 4 个相位值传输数据,因此 ϕ = { 0 , π 2 , π , 3 π 2 } \phi=\{0,\frac{\pi}{2},\pi,\frac{3\pi}{2}\} ϕ={0,2π,π,23π}。振幅都是A,因此四个星座点在IQ平面上坐标为(A,0),(0,-A),(-A,0),(0,A),分别对应二进制00,二进制01,二进制10,二进制11 (这个对应规则可以自己定义) ,如下图所示:

在这里插入图片描述

同样从星座点也可以反推出来调制信号:

幅度  ( A ) = I 2 + Q 2 相位  ( ϕ ) = arctan ⁡ ( Q I ) \text{幅度 }(A)=\sqrt{I^2+Q^2}\\\text{相位 }(\phi)=\arctan\left(\frac QI\right) 幅度 (A)=I2+Q2 相位 (ϕ)=arctan(IQ)

幅度是原点到星座点的距离,即圆周的半径,表示调制信号的能量(即功率);相位是星座点与正的I轴的夹角

以上就是星座图的介绍


2️⃣ QAM

那我们为什么引入QAM?

下图展示的是M进制-PSK的星座图,圆周半径等于信号幅度:
在这里插入图片描述
所有信号点平均分布在同一个圆周上,我们可以发现,在幅度相同,即功率相同的情况下,随着进制数M的增加,星座图上相邻信号点的距离越来越近。这意味着,随着进制数增大,频谱利用率提高,但误码率也增大

那么如何增大相邻信号点的距离呢(减小误码率)?

很容易想到,由于圆周的半径等于幅度,如果增大幅度(发射功率),相邻信号点之间的距离会增大,但是这种办法会收到发射功率的限制。

其实还有一种更好的办法,在不增大发射功率的情况下,我们可以重新安排星座点的位置。QAM就是基于这种思想提出的,QAM是一种将ASK和PSK结合起来的调制方式,可以看一下16QAM和16PSK的星座图:
在这里插入图片描述
可以发现,16QAM中星座点的距离大于16PSK,因此误码率更小。

下图展示的是64QAM和256QAM:
在这里插入图片描述
有没有发现,QAM的星座图都是方形的,这个结构会对调制带来影响吗?

暂时留下疑惑

那有没有其他结构呢?是有的,例如星型结构:

暂时留下疑惑

知识点:

  • 16QAM有16个星座点,每个星座点对应一个符号(波形),携带4bit信息。
    例如0101 1010 1111采用16QAM调制,那每4个bit就会被映射到星座图上的一个符号(星座点),而每个符号对应一个载波波形。16QAM一共有16种波形。
  • M-QAM可以看做是由两路载波正交的 M \sqrt M M - ASK信号叠加而成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值