STGCN(时空图卷积网络)详解

1️⃣ STGCN介绍

前面已经介绍过了图卷积(GCN)。这篇论文《Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition》将GCN扩展到时空图模型上,用于实现动作识别。下图展示了STGCN的输入,即一系列骨架图。其中每个节点对应于人体的一个关节,有两种类型的边,①符合节点自然连通性的空间边(图1中淡蓝色线条)②跨越连续时间步长连接相同节点的时间边(淡绿色线条)

在这里插入图片描述


2️⃣ 网络结构

STGCN简单的网络结构如下所示,由三部分构成:

  • 归一化:对输入数据归一化
  • 时空变化:通过多个ST-GCN块,每个块中交替使用GCN和TCN
  • 输出:使用平均池化和全连接层对特征进行分类

在这里插入图片描述

在这里,我们不关注数据部分,只对网络结构进行解析,因此我们来看ST-GCN块的详细结构:

在这里插入图片描述

  • 步骤一:引入一个可学习的权重矩阵,与邻接矩阵大小一致,记作Learnable edge importance weight。让它与邻接矩阵 A A A按位相乘,得到加权后的邻接矩阵。其目的是给重要的边较大的权重,给非重要的边较小的权重。
  • 步骤二:将加权后的邻接矩阵与输入数据送到GCN中进行运算
  • 步骤三:利用TCN网络,实现时间维度信息的聚合

3️⃣ 代码

# 只包含网络结构,“网络的输入(关节坐标)”和“邻接矩阵”都是随机生成的

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


# ---------------------------------------------------------------------------------
# 空域图卷积
# ---------------------------------------------------------------------------------
class SpatialGraphConvolution(nn.Module):
    """
    Args:
    in_channels: 输入通道数,表示每个节点的特征维度(例如 3 对应 x, y, z 坐标)。
    out_channels: 输出通道数,表示经过卷积后每个节点的特征维度。
    s_kernel_size: 空间卷积核的大小,等于邻接矩阵的数量,表示多重图卷积的支持
    """
    def __init__(self, in_channels, out_channels, s_kernel_size):
        super().__init__()
        self.s_kernel_size = s_kernel_size
        self.conv = nn.Conv2d(in_channels=in_channels,
                            out_channels=out_channels * s_kernel_size,
                            kernel_size=1)

    def forward(self, x, A):
        x = self.conv(x)
        n, kc, t, v = x.size()
        x = x.view(n, self.s_kernel_size, kc//self.s_kernel_size, t, v)
        #对邻接矩阵进行GC,相加特征
        x = torch.einsum('nkctv,kvw->nctw', (x, A))
        return x.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值