多信号分类算法-Mulitple Signal Classification(MUSIC)
1. 背景
(1)波达方向 direction of arrival (DOA) 估计
阵列信号处理具有广泛的应用,如雷达、声纳、医学、地震、卫星和通信系统。它成为信号处理领域的热点和难点[1]。阵列信号处理旨在处理阵列天线接收的信号,增强有用信号,抑制干扰和噪声,同时收集有用信号参数。与传统的信号定向传感器相比,传感器阵列可以灵活地控制波束,信号增益高,抗干扰能力强。这就是为什么近二十年来阵列信号处理理论能够蓬勃发展的原因。DOA估计有两个研究方向,自适应阵列信号处理和空间谱估计。自适应在文献中比空间谱更早出现,并且已经在许多实际工程系统中使用。空间谱是阵列信号处理理论中的一个重要概念。它显示了空间中每个方向的信号分布。因此,如果可以获得信号的空间频谱,就可以获得到达方向(DOA)。因此,空间谱估计也可以称为DOA估计。
DOA估计是阵列信号处理和许多工程应用中的一个关键研究领域,如无线通信、雷达、射电天文学、声纳、导航、各种物体的跟踪、地震、医学和其他需要由到达方向估计支持的紧急援助设备[2]。在现代社会,DOA估计通常作为阵列处理领域的一部分进行研究,因此许多工作突出了无线电测向。在过去的十年中,无线局域网(WLAN)由于其灵活性和方便性而快速增长。为了满足高级服务的要求,需要高速数据速率。由于频谱低端的过度使用,人们开始寻找更高的频带以获得更多的应用。随着更高的用户密度、更高的频率和更高的数据速率,多径衰落和交叉干扰成为主要问题。为了解决这些问题并获得更高的通信容量,智能天线系统被证明在抑制干扰和多径信号方面非常有效[1-3]。
(2)多信号分类算法Mulitple Signal Classification(MUSIC)
使用具有创新信号处理的阵列天线系统代替单个天线可以提高DOA估计的分辨率。该阵列结构提供接收波形的空间采样。在信号接收和参数估计中,传感器阵列比单个传感器具有更好的性能。有许多种超分辨率算法,如谱估计、Bartlett、Capon、ESPRIT、Min范数和MUSIC[4]。MUSIC算法是估计多个信号源的DOA中最流行和最广泛使用的基于子空间的技术之一。当使用MUSIC算法时,需要大量的计算来搜索谱角,因此在实际应用中,其实现可能很困难。与谱MUSIC算法相比,根MUSIC方法具有更好的性能和更低的计算复杂度。它只能用于均匀线性阵列(ULA)或非均匀线性阵列,其阵列限于均匀网格[5-6]。
多信号分类(MUSIC)算法由Schmidt及其同事于1979年提出[7]。它开创了空间谱估计算法的新时代。结构算法的推广具有兴起和发展的特点,已成为空间谱理论体系的关键算法。**MUSIC算法的基本思想是对任何阵列输出数据的协方差矩阵进行特征分解,从而产生与对应于信号分量的噪声子空间正交的信号子空间,然后利用这两个正交子空间构成一个频谱函数,通过频谱峰值搜索获得并检测DOA信号。**正是由于MUSIC算法在一定条件下具有较高的分辨率、准确性和稳定性,吸引了大量学者进行深入的研究和分析。通常,当用于估计信号的DOA时,它具有以下优点。
- 同时测量多个信号的能力。
- 高精度测量。
- 天线波束信号的高分辨率。
- 适用于短数据环境。
- 采用高速处理技术后可实现实时处理。
2. MUSIC原理推导
(1)DOA估计数学模型
为了更方便地分析和推导,现在假设DOA问题的理想数学模型满足以下条件。
- 每个测试信号源具有相同但不相关的极化。通常认为信号源是窄带的,每个信号源具有相同的中心频率 ω 0 \omega_0 ω0。测试信号源的数量为D。
- 天线阵列是由M(M>D)个阵列元件组成的间隔线性阵列;每个元素都具有相同的特性,并且在每个方向上都是各向同性的。
- 间隔为 d d d,并且阵列元件间隔不大于最高信号频率的波长的一半。
- 远场源中的每个天线元件,即接收来自信号源的信号的天线阵列是平面波。
- 阵列元件和测试信号都是不相关的;方差 σ 2 \sigma^2 σ2为零平均高斯噪声 n m ( t ) n_m(t) nm(t)。
- 每个接收支路具有相同的特性。
假设空间有M元等距线阵,阵元间距为 d d d,信号的波长为 λ \lambda λ,空间中有D个信号源,则第 m m m个阵列元件的输出信号为
x m ( t ) = ∑ k = 1 D a m ( θ k ) s k ( t ) + n m ( t ) x_m(t)=\sum_{k=1}^D a_m\left(\theta_k\right) s_k(t)+n_m(t) xm(t)=k=1∑Dam(θk)sk(t)+nm(t)
其中 s k ( t ) s_k(t) sk(t)是信号源 k k k的信号强度, n m ( t ) n_m(t) nm(t)是测量噪声, a m ( θ k ) = exp [ − j ( m − 1 ) 2 π d sin θ k λ ] a_m\left(\theta_k\right)=\exp \left[-j(m-1) \frac{2 \pi \mathrm{d} \sin \theta_k}{\lambda}\right] am(θk)=exp[−j(m−1)λ2πdsinθk]为阵元 m m m对信号源 k k k的响应函数。上述下标为 m m m的都属于第 m m m个阵列元件, 下标为 k k k的都属于信号源 k k k(该部分省略响应函数的推导过程)。上述表达式可以写成矩阵形式:
X = A S + N \mathrm{X}=\mathrm{AS}+\mathrm{N} X=AS+N
其中
X = [ x 1 ( t ) , x 2 ( t ) , … , x M ( t ) ] T S = [ S 1 ( t ) , S 2 ( t ) , … , S D ( t ) ] T N = [ n 1 ( t ) , n 2 ( t ) , … , n M ( t ) ] T A = [ a ( θ 1 ) , a ( θ 2 ) , … , a ( θ D ) ] T = [ 1 1 ⋯ 1 e − j φ 1 e − j φ 2 ⋯ e − j φ D ⋯ ⋯ ⋯ ⋯ e − j ( M − 1 ) φ 1 e − j ( M − 1 ) φ 2 ⋯ e − j ( M − 1 ) φ D ] , with φ k = 2 π d λ sin θ k \begin{aligned} X&=\left[\mathrm{x}_1(\mathrm{t}), \mathrm{x}_2(\mathrm{t}), \ldots, \mathrm{x_M}(\mathrm{t})\right]^{\mathrm{T}} \\ \mathrm{S}&=\left[\mathrm{S}_1(\mathrm{t}), \mathrm{S}_2(\mathrm{t}), \ldots, \mathrm{S}_{\mathrm{D}}(\mathrm{t})\right]^{\mathrm{T}}\\ \mathrm{N}&=\left[\mathrm{n}_1(\mathrm{t}), \mathrm{n}_2(\mathrm{t}), \ldots, \mathrm{n}_{\mathrm{M}}(\mathrm{t})\right]^{\mathrm{T}} \\ \mathrm{A}&=\left[a\left(\theta_1\right), a\left(\theta_2\right), \ldots, a\left(\theta_D\right)\right]^{\mathrm{T}} \\ &=\left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ \mathrm{e}^{-j \varphi_1} & \mathrm{e}^{-j \varphi_2} & \cdots & \mathrm{e}^{-j \varphi_D} \\ \cdots & \cdots & \cdots & \cdots \\ \mathrm{e}^{-j(M-1) \varphi_1} & \mathrm{e}^{-j(M-1) \varphi_2} & \cdots & \mathrm{e}^{-j(M-1) \varphi_D} \end{array}\right], \\ &\text { with } \varphi_k=\frac{2 \pi d}{\lambda} \sin \theta_k\\ \end{aligned} XSNA=[x1(t),x2(t),…,xM(t)]T=[S1(t),S2(t),…,SD(t)]T=[n1(t),n2(t),…,nM(t)]T=[a(θ1),a(θ2),…,a(θD)]T= 1