【DL经典回顾】距离度量大汇总(15-堪培拉距离(Canberra Distance))
在深入探讨深度学习(DL)时,我们常常会发现,有些基础概念虽小,却影响深远。距离度量就是这样一个看似简单,实则至关重要的概念。它是机器学习和深度学习中不可或缺的一环,影响着模型的性能和应用的广泛性。在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。
一、堪培拉距离(Canberra Distance)
1. 定义和公式
堪培拉距离是用于度量两个向量间差异的数值度量,特别适用于非负数值数据。给定两个向量 A = ( a 1 ,