常用距离计算与定义

本文详细介绍了数值向量和布尔向量的各种距离计算方法,包括欧氏距离、余弦相似度、汉明距离等,并提供了相关公式和实例。此外,还探讨了JS散度的特殊情况,当p,q完全不重叠时,其值等于log2。这些距离和相似度度量在数据分析、机器学习和信息检索等领域中有着广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用距离计算与定义–学习笔记
目录
1.数值向量距离
布雷柯蒂斯相异度(Bray-Curtis distance)
坎贝拉距离(Canberra distance)
切比雪夫距离(Chebyshev distance)
曼哈顿距离(Manhattan/cityblock distance)
相关系数距离(Correlation distance)
余弦相似度距离(Cosine distance)
欧氏距离(Euclidean distance)
JS散度距离(Jensen-Shannon distance)
马氏距离(Mahalanobis distance)
闵可夫斯基距离(Minkowski distance)
标准欧式距离(standardized Euclidean distance)
平方欧式距离(squared Euclidean distance)
加权闵可夫斯基距离(Minkowski distance)
搬土距离(Earth Mover distance)
2.布尔向量距离
Dice系数(Dice dissimilarity)
汉明距离(Hamming distance)
杰卡德差异(Jaccard-Needham dissimilarity)
库尔辛斯基差异(Kulsinski dissimilarity)
田本罗杰斯差异(Rogers-Tanimoto dissimilarity)
拉塞尔差异(Russell-Rao dissimilarity)
索卡尔米切纳差异(Sokal-Michener dissimilarity)
索卡尔雪差异(Sokal-Sneath dissimilarity)
Yule差异(Yule dissimilarity

数值向量距离

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当p ,q完全不重叠时js散度为一个常数=log2,推导过程:https://blog.csdn.net/Invokar/article/details/88917214
在这里插入图片描述附解析
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
附:例题S应该指S²!?
在这里插入图片描述
在这里插入图片描述

布尔向量距离

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
原文作者: Boole
文章链接: http://booleflow.com/2020/10/31/chang-yong-ju-chi-ding-yi-yu-ji-suan/
代码源码:https://github.com/scipy/scipy/blob/v0.17.1/scipy/spatial/distance.py#L606-L634

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值