数据分析的类型有哪些?

数据分析的类别

维度一

在统计学领域,有些学者根据分析的方法和目的,分析可以被划分为描述性分析(descri-ptive analytics)、预测性分析(predictive analytics)和规范性分析(prescriptive analytics)。

探索性数据分析侧重于在数据之中发现新的特征,而规范性数据分析则侧重于验证已有假设的真伪证明。从另一个角度看,描述性数据分析属于初级数据分析,常见的分析方法有对比分析法、平均分析法、交叉分析法等。而预测性数据分析以及规范性数据分析属于高级数据分析,常见的分析方法有相关分析、因子分析、回归分析等。

具体介绍

描述性数据分析包括数据收集、整理、制表、制图以及描述正要研究的食物的特征,这类分析以往被称为“报告”。描述性分析可能非常有用,但它不能解释某种结果出现的原因或者未来可能会发生的事情。
预测性数据分析不仅可以对数据特征和变量(可以假定取消范围的因素)之间的关系进行描述,还可以基于过去的数据预测未来。预测性分析首先会确定变量值之间的关联,然后基于这种已知的关联预测另一种现象出现的可能性,比如在看到某个广告后,一位消费者可能会去买产品的可能性。虽然预测性分析中的预测是基于变量之间的关系做出来的,但这不代表预测性分析中都需要明确因果关系。事实上,准确的预测并不一定与需要基于因果关系。
规范性数据分析是更高层次的分析,如实验设计和优化等。就像医生会在出处方建议患者采取什么行动一样,实验设计试图通过做实验给出某些事情发生的原因。为了能够在因果关系研究中信心饱满地做出推断,研究人员必须妥善处理一个或多个独立的变量,并有效控制其他的变量。如果处于试验环境下的测试组的表现大大优于照相,决策制定者就应该立即推广这种实验环境。

维度二

根据分析采用的方法以及收集和分析的数据类型,我们也可以将分析分为定性分析(qualitative analysis)和定量分析(quantitative analysis)。

具体介绍

定性分析的目的是深入了解某种现象的根本原因和诱因。非结构化数据通常是从少数非代表性案例中收集而来,并进行了非统计性分析。

定量分析是分析的最初阶段,他通常是探索性分析的有效工具,定量分析是指通过统计、数学或者计算的方式对现象进行系统的实证研究。通常情况下,结构化数据是从大量典型案例中收集而来,并进行统计分析。
在这里插入图片描述
同时,为了服务于研究者的不同研究目的,存在以下几种类型的分析:

*统计学:收集、整理、分析、说明和呈现数据的学科;
*预测:根据已有数据,预测一下一些感兴趣的变量在未来某个特定的时间点的情况;
*数据挖掘:通常使用算法和统计技术,自动或半自动地提取大量数据中未知的有趣模式;
*文字挖掘:用类似数据挖掘的方式从文本中得模式和趋势的过程;
*优化:在同时满足约束条件的情况下,按照某些标准利用数学方法来寻找最优的解决方案;
*实验设计:给各组随机分配被试。然后使用测试组和对照组来推导出特定结果中存在的因果关系。

虽然此处给出了一些列常用的分析方法,但在使用过程中会不可避免地出现相当大的重叠。例如,回归分析(regression analysis)是预测分析中最常用的方法,与此同时,他也是统计学、预测和数据挖掘中常用的方法。此外,时间序列分析(time seties analysis)是用于分析数据随时间变化的一种具体统计方法、在统计学和预测中经常被用到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值