海龟交易系统的实现
前言
海龟交易系统本质上是一个趋势跟随的系统,但是最值得我们学习的,是资金管理尤其是分批建仓及动态止损的部分
一、趋势捕捉
** 唐奇安通道**
该指标是有Richard Donchian发明的,是有3条不同颜色的曲线组成的,该指标用周期(一般都是20)内的最高价和最低价来显示市场价格的波动性,当其通道窄时表示市场波动较小,反之通道宽则表示市场波动比较大。 如图所示:
该具体分析为:
当价格冲冲破上轨是就是可能的买的信号;反之,冲破下轨时就是可能的卖的信号。
该指标的计算方法为:
上线=Max(最高低,n)
下线=Min(最低价,n)
中线=(上线+下线)/2
海龟交易就是利用唐奇安通道的价格突破来捕捉趋势。
不过我们在向下突破10日唐奇安下沿卖出。
二、资金管理
2.1、N值计算
N值是仓位管理的核心,涉及加仓及止损。另外,N值与技术指标平均真实波幅 ATR很相似
首先介绍真实波幅: 真实波幅是以下三个值中的最大值
1、当前交易日最高价和最低价的波幅
2、前一交易日的收盘价与当前交易日最高价的波幅
3、前一交易日的收盘价与当前交易日最低价的波幅
用公式写就是:
TrueRange=Max(High−Low,abs(High−PreClose),abs(PreClose−Low))
接下来,N值计算公式为:
N=PreN[−19:]+TrueRange20
其中 preN为前面N值,TrueRange为当前的真实波幅,此公式的真是含义为计算之前20天(包括今天在内)的N的平均值
另外,有些海龟交易系统用的是ATR来代替N值,ATR为真实波幅的20日平均。
2.2 买卖单位及首次建仓
先给出公式:
Unit=1N
首次建仓的时候,当捕捉到趋势,即价格突破唐奇安上轨时,买入1个unit。
其意义就是,让一个N值的波动与你总资金1%的波动对应,如果买入1unit单位的资产,当天震幅使得总资产的变化不超过1%。例如:
现在你有10万元资金,1%波动就是1000元。假如标X的N值为0.2元,1000元÷0.2元=5000股。也就是说,你的第一笔仓位应该是在其突破上轨(假设为5元)时立刻买入5000股,耗资25000元。
2.3 加仓
若股价在上一次买入(或加仓)的基础上上涨了0.5N,则加仓一个Unit。
接上面的例子:假如N值仍为0.2。
价格来到 5 + 0.2*0.5 = 5.1时,加仓1个Unit,买入5000股,耗资25500元,剩余资金 49500元
价格来到 5.1 + 0.2*0.5 = 5.2 时再加仓1个unit。买入5000股,耗资26000元,剩余资金 23500元
2.4 动态止损
当价格比最后一次买入价格下跌2N时,则卖出全部头寸止损。
接上面的例子,最后一次加仓价格为5.2。假如此时N值0.2元。 当价格下跌到 5.2 - 2*0.2 = 4.8元时,清仓。
持仓成本为 (5+5.1+5.2)*5000/15000 = 5.1元。 此时亏损 (5.1-4.8)*15000 = 4500元 对于10万来说 这波亏损4.5%
2.5 止盈
当股价跌破10日唐奇安通道下沿,清空头寸结束本次交易
三、代码实现
本代码用ATR代替N值进行计算,其他逻辑不变:
ATR=MA(TrueRange,20)
我们以单只股票为标,建立海龟交易系统,当然,可以将总资产均分为n份,同时交易n个标。
计算ATR值用日线数据,监控价格突破采用分钟线
0 初始化参数,在initialize(account)写入
1
def initialize(account):
2
account.last_buy_prcie = 0 #上一次买入价
3
account.hold_flag = False # 是否持有头寸标志
4
account.limit_unit = 4 # 限制最多买入的单元数
5
account.unit = 0 # 现在买入1单元的股数
6
1 唐奇安通道计算及判断入场离场:
我们设计个函数,传入值为回测中 account.get_history()取得的某单个股票的历史数据、股票现价、T为计算唐奇安通道的数据长度,转化为dataframe格式
1
def IN_OR_OUT(data,price,T):
2
up = max(data['highPrice'].iloc[-T:])
3
down = min(data['lowPrice'].iloc[-int(T/2):]) # 这里是10日唐奇安下沿
4
if price>up:
5
return 1
6
elif price<down:
7
return -1
8
else:
9
return 0
2. ATR值计算:
1
def CalcATR(data):
2
TR_List = []
3
for i in range(1,21):
4
TR = max(data['highPrice'].iloc[i]-data['lowPrice'].iloc[i],abs(data['highPrice'].iloc[i]-data['closePrice'].iloc[i-1]),abs(data['closePrice'].iloc[i-1]-data['lowPrice'].iloc[i]))
5
TR_List.append(TR)
6
ATR = np.array(TR_List).mean()
7
return ATR
3. 计算unit,注意股数为100的整数倍
1
def CalcUnit(perValue,ATR):
2
return int((perValue/ATR)/100)*100
4.判断是否加仓或止损:
当价格相对上个买入价上涨 0.5ATR时,再买入一个unit
当价格相对上个买入价下跌 2ATR时,清仓
1
def Add_OR_Stop(price,lastprice,ATR):
2
if price >= lastprice + 0.5*ATR:
3
return 1
4
elif price <= lastprice - 2*ATR:
5
return -1
6
else:
7
return 0