Backtrader 实现和理解海龟交易法
1. 海龟交易的理解
(1)资金管理
海龟将总资金分为N个交易单位,每个单位即称为头寸,划分的标准主要是参考标的的波动性。
波动性用一个指标量化即真实波动幅度均值(ATR)。
真实波动幅度均值(ATR)是当前交易日前20交易日真实波动幅度的移动平均值。
真实波动幅度是取最高价与最低价、最高价与前一日收盘价、最低价与前一日收盘价的最大值。
结合交易时点已经形成的当天最高、最低和上一交易日的收盘价,可以计算出交易时点当天的真实波动幅度,用TR表示。计算真是波动幅度均值公式为:
ATR=(19*PDN+TR)/ 20
ATR相当于考虑了21天的真实波动幅度,前20天真实波动幅度的平均值就是公式里的PDN,结合交易当日(第21天)的真实波动幅度(TR),平均后就成了真实波动幅度均值。
波动性就是真实波动幅度均值(ATR),这时用这个波动性来将总资金分成N个交易单位(头寸),核心就一句话:价格波动1个ATR,总仓位资金变化1%。
推导公式,假设当前价格是P,买入1头寸元的该标的,所以:
1头寸 / P * ATR = 总仓位资金*1%
ATR是单只标的资产的价格波动,乘以持有的数量(1头寸资金买该标的,买的数量就是1头寸/价格P)就是盈亏幅度,这个盈亏幅度即为总仓位资金的1%。
1头寸单位 = 总仓位资金*1% * P / ATR
(2)买入/加仓
唐奇安通道是由一条上轨线、中线和下轨线组成,上轨线由N1日内最高价构成,下轨线由N2日内最低价计算,当价格冲破上轨是可能的买入信号,反之,冲破下轨时是可能的卖出信号。
以唐奇安通道为标准:
- 首次买入
价格突破20日上轨线即决定是否入市。 - 加仓
入市时买入1头寸资金的标的。
价格每发生盈利方向波动1/2ATR,加仓1头寸单位。
4个头寸单位为总持仓上限,加完就等着止盈或者止损退出。
风险:
这种加仓方法的风险就是加仓太密,在遭遇假突破后,后面的仓位退出时经常是亏损的。但在盈利的时候后面的仓位对比前面的仓位又没有价格优势。
加仓太密集的另一后果就是同一时间段的敞口风险太大。
可以考虑浮赢加仓,在第一仓有充足利润了之后,至少大于2倍盈亏比才加仓,这样,第二仓即使亏损了,第一仓的盈利还能补平。(没有实现)
(3)止盈
发生不利价格向下突破10日下轨线,全部清仓。
(4)止损
止损原则是每次交易导致总资金亏损不超过2%。
策略:由于每一个ATR波动引起总资金1%的变动,即价格在不利方向变动超过2个ATR单位,触发止损。
(注意:在多次加仓的情况下,按照最后一次加仓的入市价格,一旦发生不利变动超过2ATR单位,全部头寸清仓,此时可能没有触及第一笔交易的止损点。)
(5)问题
《海龟交易法则》1984年发布,写的是24年前也就是1960年的故事,就是杰西·利弗莫尔(1877-1940)的突破交易法的变种,杰西·利弗莫尔是《股票大作手回忆录(Reminiscences of a Stock Operator)》的主人公。
海龟交易法的成功,源于当时的价格走势总是走趋势且不回调的行情,所以海龟能够在少数抓住趋势的情况下,也能够通过加仓带来的重仓盈利。
当大家都知道了海龟交易法则理论和操作,海龟法则必然就失效了。
2. 验证
(1)代码
# 海龟交易法
class TurtleStrategy(bt.Strategy):
# 默认参数
params = (
('H_period', 20), # 周期
('L_period', 10), # 唐奇安通道下轨周期
('ATRPeriod', 14), # 平均真实波幅ATR周期
('printlog', False) # 打印交易记录日志
)
# 交易记录日志(默认打印结果)
def log(self, txt, dt=None, printlog=False):
if printlog:
#dt = dt or self.datetime.date(0)
dt = dt or self.datetime.date(0)
print(f'{dt.isoformat()},{txt}')
def __init__(self):
# 初始化
self.order = None # 未决订单
self.buyprice = 0 # 买单执行价格
self.buycomm = 0 # 订单执行佣金
self.buy_size = 0 # 买单数量
self.buy_count = 0 # 买入次数计数
self.buy_count_limit = 4 # 买入次数限制
# 海龟交易法则中的唐奇安通道和平均真实波幅ATR
self.H_line = bt.indicators.Highest(self.data.high(-1), period=self.p.H_period, plot=False)
self.L_line = bt.indicators.Lowest(self.data.low(-1), period=self.p.L_period, plot=False)
self.ATR = bt.indicators.AverageTrueRange(self.datas[0], period=self.p.ATRPeriod)
# 价格与上下轨线的交叉
self.buy_signal = bt.indicators.CrossOver(self.datas[0], self.H_line(0), plot=False)
self.sell_signal = bt.indicators.CrossDown(self.datas[0], self.L_line(0), plot=False)
def next(self):
if self.order:
return
# 入场:价格突破上轨线且空仓时
if self.buy_signal and self.buy_count == 0:
# 计算买入数量
#self.buy_size = self.broker.getvalue() * 0.01 / self.ATR # 不能用总资金
self.buy_size = self.broker.getcash() * 0.01 / self.ATR[0]
# 买入数量取整,100的倍数
self.buy_size = int(self.buy_size / 100) * 100
self.buy_count += 1 # 买入次数计数
self.log('空仓状态,创建买单,价格:%.2f,数量:%.2f,头寸数:%.0f' % (self.data.close[0], self.buy_size,self.buy_count))