【简单神经网络】—— 神经网络介绍和案例

1、神经网络基础 

2、人工神经网络(ANN)

3、Mnist数据集浅层神经网络分析

4、卷积神经网络(CNN)

5、卷积网络Mnist数字图片识别

一、神经网络基础

1、感知机

感知机是一类人造神经元,在许多神经网络中,主要的神经元模型是sigmoid神经元。我们将很快的了解什么是sigmoid神经元,但是想要知道为什么sigmoid要这么定义,就需要我们花点时间去了解感知机。

        感知机如何工作?一个感知机通过一些二进制的输入x1,x2,...x1,x2,...,然后产生一个二进制的输出: 

        在上图中,感知机有三个输入x1,x2,x3x1,x2,x3,通常它可以有更多或者更少的输入。Rosenblatt提出了一个简单的规则来计算输出,它用权重w1,w2...w1,w2...来表示各个输入对输出的重要性。神经元的输出,要么是0要么是1,由权重和∑jwjxj∑jwjxj的值是否小于或者大于某一阈值。和权重一样,阈值也是一个实数,它是神经元的一个参数。用代数式表达就是:

以上就是感知机的工作原理。

应用:很容易解决与、或问题

与问题:所有的输入为1,则输出为1

建立权重w1=1,w2=1,阈值设为1.5。输入样本有(1,1)、(0,0)、(0,1)、(1,0),结果可以把(1,1)和其他三个点分开

或问题:输入只要有为1,则输出就为1

同上,也是可以在坐标轴中找出一条直线,把(0,0)和其他三个点区分开

异或问题:相同为0,不同为1

按照上面的样本,需要两条直线把(0,0)、(1,1)和其他两个点区分开。那么两条直线需要两个感知机。

说明:

单个感知机解决不了的问题,可以通过增加感知机解决。

2、人工神经网络

人工神经网络(ANN),简称神经网络(NN)或类神经网络,是一种模仿生物神经网络的结构和功能的计算模型,用于对函数进行估计或近似。

神经网络的种类

  • 基础神经网络:单层感知机、线性神经网络、BP神经网络、Hopfield神经网络等
  • 进阶神经网络:玻尔兹曼机、受限玻尔兹曼机、递归神经网络等
  • 深度神经网络:深度置信网络、卷积神经网络、循环神经网络、LSTM网络等

感知机就是神经元,多个神经元组成了神经网络。

神经网络的特点

  • 输入向量的维度和输入神经元的个数相同
  • 每个连接都有个权值
  • 同一层神经元之间没有连接
  • 由输入层、隐层、输出层组成
  • 第N层与第N-1层的所有神经元连接,也叫全连接层

神经网络的组成

结构:神经网络的权重,神经元等等

激活函数

学习规则:学习规则指定了网络中的权重如何随着时间推进而调整(反向传播算法

神经网络的多分类问题:

输入某一个样本,输出属于全部类别的每一个概率。全连接层有多少个输出,就有多少个类别。

神经网络的API

在使用tensorflow时,tf.nn、tf.layers、tf.contrib模块有很多功能是重复的。

  • tf.nn

提供神经网路相关操作的支持,包括卷积操作(conv)、池化操作(pooling)、归一化、loss、分类操作、embedding、RNN、Evaluation。

  • tf.layers

主要提供高层的神经网路,主要和卷积相关,对tf.nn进一步封装。

  • tf.contrib

tf.contrib.layers提供计算图中的网络层、正则化、摘要操作,是构建计算图的高级操作。但是tf.contrib包不稳定。

二、浅层人工神经网络模型

1、SoftMax回归

softmax 回归(softmax regression)其实是 logistic 回归的一般形式,logistic 回归用于二分类,而 softmax 回归用于多分类。

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类

公式:

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是

softmax直白来说就是将原来神经网络输出的值通过softmax函数作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标

案例:如果要识别一个手写数字图片,假设照片长宽为28*28=784,目标类别是0-9,共10个类别。

如果有n个样本进行输入,则有[n, 784] * [784, 10] + 10个偏置 = [n, 10] 。则最后输出样本预测值为n行10列。

交叉熵损失:求所有样本的损失,然后求平均损失。

2、损失计算API

交叉熵损失公式:

公式暂时缺少,可百度

算法损失策略优化
线性回归均方误差梯度下降
逻辑回归对数似然损失梯度下降
神经网络交叉熵损失反向传播算法(梯度下降)

说明:在神经网络中梯度下降又称反向传播算法。因为在神经网络中的隐层可以有很多中间层,在损失计算时,通过梯度下降来优化的权重值从后往前更新,所以又叫反向传播算法。

3、API介绍

1、全连接 - 从输入直接到输出

特征加权:

  • tf.matmul(a, b, name=None)+bias
    • return:全连接结果,供给交叉损失运算
    • 不需要激活函数(因为是最后的输出)

2、SoftMax计算、交叉熵

  • tf.nn.softmax_cross_entropy_with_logits(labels=None, logits=None, name=None)
    • 计算logits和labels之间的交叉损失熵
    • labels:标签值(真实值)
    • logits:样本加权之后的值(不是softmax值)
    • return:返回损失值列表

3、损失值列表平均值计算

  • tf.reduce_mean(input_tensor)
    • 计算张量的尺寸的元素平均值

4、损失下降API

  • tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    • 梯度下降优化
    • learning_rate:学习率
    • minimize(loss):最小化损失
    • return:梯度下降op

5、one-hot编码API

  • tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)
    • indices:在独热编码中位置,即数据集标签
    • depth:张量的深度,即类别数
  • 获取数据
    • from tensorflow.examples.tutorials.mnist import input_data
    • mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

数据如图:

用法如下:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("./data/", one_hot=True)
print(mnist.train.images)  # 所有样本的特征值 (n, 784)
print(mnist.train.labels)  # 所有样本的目标值  (n, 10)

# print(mnist.train.images[0])  # 第一个样本的特征值
# print(mnist.train.next_batch(50))  # 批次获取多条数据(特征值和目标值)。再次执行时获取的是后面的50条数据

运行后如下所示:

 

6、准确性计算

  • equal_list = tf.equal(tf.argmax(y, 1), tf.argmax(y_label, 1))
    • tf.argmax()按行求出真实值y、预测值y_label最大值的下标
    • tf.equal()求出真实值和预测值是否相等的结果,也就是预测结果列表
  • accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
    • 用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值

每个样本的特征概率值与目标值比较是否在同一个位置,用1表示预测成功。

最终所有样本结果类别预测成功与否:[1,0,1,0,0,1, ... , 1]   准确率:成功数/样本总数

三、案例 - 实现手写数字图片识别(训练)

Mnist手写数字识别

Mnist数据集可以从官网下载,网址:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges下载下来的数据集被分成两部分:训练集和测试集。

单层(全连接层)实现手写数字识别:

1、定义占位符   特征值[None, 784]   目标值[None, 10]

2、建立模型    随机初始化权重和偏置     w[784, 10]   b[10]    y_predict=tf.matmul(x, w) + b

3、计算损失   loss平均样本损失

4、梯度下降优化

实现流程:

1、准备数据

2、全连接结果计算

3、损失优化

4、模型评估(计算准确性)

#! /usr/bin/env python 
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

"""
单层(全连接层)神经网络手写数字识别案例
"""
def full_connected():

    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/", one_hot=True)

    # 1、建立数据的占位符  x[None, 784]  y_true[None, 10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])
        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2、建立一个全连接层的神经网络  w[784, 10]  b[10]
    with tf.variable_scope("fc_model"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="weight")
        bias = tf.Variable(tf.constant(0.0, shape=[10]))

        # 预测None个样本的输出结果matrix  [None,784]*[784,10]+[10]=[None,10]
        y_predict = tf.matmul(x, weight) + bias

    # 3、求所有样本损失,然后求平均损失
    with tf.variable_scope("soft_cross"):
        # 求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降求损失
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5、计算准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 为了观察损失值和准确率随着训练步数的变化情况,收集变量
    # 收集单个数字值
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)
    # 收集高维度变量
    tf.summary.histogram("weightes", weight)
    tf.summary.histogram("biases", bias)
    # 定义一个合并变量的op
    merged = tf.summary.merge_all()

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 开启会话训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./summary/", graph=sess.graph)

        # 迭代步数去训练,更新参数预测
        for i in range(2000):

            # 取出样本数据的特征数据、目标数据
            mnist_x,mnist_y= mnist.train.next_batch(50)
            # 运行train_op训练
            sess.run(train_op, feed_dict={x:mnist_x , y_true:mnist_y})

            # 写入每步训练的值
            summary = sess.run(merged, feed_dict={x:mnist_x , y_true:mnist_y})
            filewriter.add_summary(summary, i)

            print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x:mnist_x , y_true:mnist_y})))


if __name__ == '__main__':
    full_connected()

运行后展示:

四、案例 - 实现手写数字图片识别(预测)

完整代码如下:

#! /usr/bin/env python 
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

"""
单层(全连接层)神经网络手写数字识别案例
"""

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("is_train", 1, "指定程序是训练还是预测,训练为1")

def full_connected():

    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/", one_hot=True)

    # 1、建立数据的占位符  x[None, 784]  y_true[None, 10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])
        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2、建立一个全连接层的神经网络  w[784, 10]  b[10]
    with tf.variable_scope("fc_model"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="weight")
        bias = tf.Variable(tf.constant(0.0, shape=[10]))

        # 预测None个样本的输出结果matrix  [None,784]*[784,10]+[10]=[None,10]
        y_predict = tf.matmul(x, weight) + bias

    # 3、求所有样本损失,然后求平均损失
    with tf.variable_scope("soft_cross"):
        # 求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降求损失
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5、计算准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 为了观察损失值和准确率随着训练步数的变化情况,收集变量
    # 收集单个数字值
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)
    # 收集高维度变量
    tf.summary.histogram("weightes", weight)
    tf.summary.histogram("biases", bias)
    # 定义一个合并变量的op
    merged = tf.summary.merge_all()

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 创建一个saver
    saver = tf.train.Saver()


    # 开启会话训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./summary/", graph=sess.graph)

        if FLAGS.is_train == 1:
            # 迭代步数去训练,更新参数预测
            for i in range(2000):

                # 取出样本数据的特征数据、目标数据
                mnist_x, mnist_y = mnist.train.next_batch(50)
                # 运行train_op训练
                sess.run(train_op, feed_dict={x:mnist_x , y_true:mnist_y})

                # 写入每步训练的值
                summary = sess.run(merged, feed_dict={x:mnist_x , y_true:mnist_y})
                filewriter.add_summary(summary, i)

                print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x:mnist_x , y_true:mnist_y})))
            # 保存模型
            saver.save(sess, "./ckpt/model")
        else:
            # 预测数据
            # 加载模型
            saver.restore(sess, "./ckpt/model")

            for i in range(100):

                # 每次测试一张图片
                x_test, y_test = mnist.test.next_batch(1)
                print("第%d张图片,手写数字图片目标是:%d,预测结果是:%d" % (
                    i,
                    tf.argmax(y_test, 1).eval(),
                    tf.argmax(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1).eval()
                ))

if __name__ == '__main__':
    full_connected()

文件夹目录如下:

运行后如下:

python test02.py --is_train=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值