Spark SQL 内置函数和自定义函数UDF

Spark SQL内置函数

可以在org.apache.spark.sql.funtions.scala中查看具体的函数。
在这里插入图片描述
例如:

val accessLog = Array(
“2016-12-27,001”,
“2016-12-27,001”,
“2016-12-27,002”,
“2016-12-28,003”,
“2016-12-28,004”,
“2016-12-28,002”,
“2016-12-28,002”,
“2016-12-28,001”
)

  1. 定义表结构;
  2. RDD转换为Row;
  3. 根据数据以及Schema信息生成DataFrame;
  4. 内置函数操作
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
val accessLog = Array(
      "2016-12-27,001",
      "2016-12-27,001",
      "2016-12-27,002",
      "2016-12-28,003",
      "2016-12-28,004",
      "2016-12-28,002",
      "2016-12-28,002",
      "2016-12-28,001"
    )
    val schema = StructType(Array(
      StructField("day", StringType, true),//true表示是否不为空
      StructField("userId", IntegerType, true)
    ))
    val rdd = sc.parallelize(accessLog).map(_.split(","))
      .map(x => Row(x(0), x(1).toInt))
    val df = spark.createDataFrame(rdd,schema)
    //df.printSchema()

    //导入Spark SQL内置的函数
      import org.apache.spark.sql.functions._
      //求每天所有的访问量(pv)
df.groupBy(df("day")).agg(count(df("userId")).as("pv"))
      .collect().foreach(println)

    //求每天的去重访问量(uv)
df.groupBy(df("day")).agg(countDistinct(df("userId"))).as("pv")
      .show()

自定义函数

  1. 定义函数
  2. 注册函数
    SparkSession.udf.register():只在sql()中有效;
    functions.udf():对DataFrame API均有效;
  3. 函数调用
case class Hobbies(name:String,hobbies:String)
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder().master("local[1]").appName("UDF")
      .getOrCreate()
    val sc = spark.sparkContext
    import spark.implicits._

val rdd = sc.textFile("data/hobbies.txt")
    val hobbyDF = rdd.map(_.split(" ")).map(p=>Hobbies(p(0),p(1))).toDF()
    hobbyDF.show()
   df.createTempView("hobbies")
    //注册自定义函数
    spark.udf.register("hobby_num",(v:String)=>v.split(",").size)
//调用自定义函数
    spark.sql("select name,hobbies,hobby_num(hobbies) as bobby_num from hobbies")
      .show()
      }

我们还可以先定义好函数,然后调用该函数:

val fun=(x:String)=>{
        x.split(",").size
      }
 spark.udf.register("hobby_num",fun)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值