分治算法(Dvide and Conquer)

1 Divide and Conquer

分治算法基本就是分为三个步骤

1.1 Divide

当问题的规模到达一定数量时候,可以把大问题先分解为一个个小问题

1.2 Conquer

针对每个小问题,都有一套相同的方法去解决,这里大多数时候都会采用递归

1.3 Conbine

最后这个步骤是个可选步骤,根据问题的不同来决定是否采用,把每一个小问题的解合并为一个最终的解

分治算法的一般解决问题时的流程伪代码

Divide-and-Conquer(问题规模n) {
	if (n < n0基本规模) {
		采用一般解法 return;
	}
	else{
		for (int i = 1; i < k; i++) {//把问题分为p(k)个小问题,然后去遍历解决每一个小问题
			y= Divide-and-Conquer(p(i))//一般就是采用递归的方法去解决
		}
	}
	T = Conbine(p1 + p2 + p3 + ... + pk);//把每一个小问题结合
	return T;
}

2 经典例题解析----棋盘覆盖问题

问题描述:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

2.1 首先棋盘问题是否一定可解,如果可解的话如何证明?

数学归纳法证明如下:

首先我们知道当在n=1(2*2)的时候肯定有解

我们假设在n=k(2^k*2^k)的时候有解

当n=k+1时,我们可以把棋盘划分分成四等分,很明显,那个特殊位置一定在那四个区域的其中一个,然后在划线的交汇处,就是那个中心点,在非特殊位置的那三个区域标记上标签,就形成了L行骨牌的的覆盖,于是在那四个区域中,每一个区域的都有一个特殊位置不能覆盖,最后转化为n=k(2^k*2^k)是否有解问题,通过假设我们知道n=k(2^k*2^k)有解问题

因此棋盘问题始终有解,证毕

2.2使用分治算法解决棋盘覆盖问题

2.2.1伪代码如下

ChessBoard(size, dr, dc, tr, tc)
	if size = 1 reurn
	t++;
	s=size/2
	if(dr < tr + s && dl < tl + s)
	ChessBoard(s, dr, dl, tr, tl);
	else
	board[dr + s - 1][dl + s - 1] = t;
	ChessBoard(s, dr + s - 1, dl + s - 1, tr, tl);
	if (dr > tr + s && dl < tl + s) 
	ChessBoard(s, dr + s, dl + s - 1, tr, tl);
	else
	board[dr + s][dl + s - 1] = t;
	ChessBoard(s, dr + s, dl + s - 1, tr, tl);

2.2.2正常代码如下 

#include<iostream>
using namespace std;

//创建一个二维的数组,命名为board

int board[10000][10000];
void ChessBoard(int size,int dr,int dl,int tr,int tl) {
	if (size == 1) {//如果棋盘大小为2*2则返回
		return ;
	}
	int s,t=1;
	t++;
	s = size / 2;
	//否则分割棋盘
		if (dr < tr + s && dl < tl + s) {//分割左上棋盘,查看棋盘是否有特殊方格
			ChessBoard(s,dr, dl, tr, tl);//如果有特殊方格,则直接递归
		}
		else//否则先覆盖再递归
		{
			board[dr + s - 1][dl + s - 1] = t;
			ChessBoard(s, dr+s-1, dl+s-1, tr, tl);
		}
		//分割右上棋盘,查看棋盘是否有特殊方格,方式与分割左上棋盘的一样
		if (dr > tr + s && dl < tl + s) {
			ChessBoard(s, dr+s, dl+s-1, tr, tl);
		}
		else
		{
			board[dr + s][dl + s - 1] = t;
			ChessBoard(s, dr + s, dl + s - 1, tr, tl);
		}
		//左下与右下方式几乎相同故省略
}


int main() {
	int n, dr, dl;
	cout << "请输入棋盘的大小:";
	cin >> n;
	cout << "请输入特殊方格的位置:";
	cin >> dr >> dl;
	ChessBoard(n,dr,dl,0,0);//默认左上的开始位置是(0,0)
	return 0;
}

 2.3讲解洛谷P1226题

题目描述

给你三个整数 a,b,pa,b,p,求 a^b \bmod pabmodp。

输入格式

输入只有一行三个整数,分别代表 a,b,pa,b,p。

输出格式

输出一行一个字符串 a^b mod p=s,其中 a,b,pa,b,p 分别为题目给定的值, ss 为运算结果。

2.3.1关键解题步骤

这里最关键的是如何进行分治的问题,通过二进制来把幂转化成 2 的幂的序列之和,而二进制中从右数第 i 位(值为 1 或是 0)则标记了对应的幂是否存在于序列之中,例如:10 的二进制表示为 1010,所以 10 可以表示为 2^3 + 2^1,每一部分进行相应的循环即可所以,7^10 = 7^2^3+2 = 7^2 × 7^2^3 = 7^2 × ((7^2)2)2 = (7 × 7) × (((7 × 7) × ((7 × 7)) × (7 × 7) × (7 × 7)))

可以如下逐步计算:

for (int i = 1; i < b; i++) {//分解成一个个小问题后的求解
		a = a ^ a;
	}

2.3.4关键代码(关键展示二进制过程)

int solve()//输入三个数最后求a^b mod q
{
    long long a,b;
	int ans = 1, base = a;
	while(b)// 将幂二进制化
    {
		if(b & 1)
			ans *= base;
		
        base *= base;
		b >>= 1;
	}
	return ans;
}

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值