电影数据分析需求文档

该项目旨在通过网络爬虫获取豆瓣电影的评分、关键字等信息,提供电影查询和个性化推荐功能。系统采用三层架构,利用SQL Server2005作为数据库,确保用户能便捷获取和定制电影资讯。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.项目概述

1.1项目背景

根据北京电影学院、社会科学文献出版社联合主办的《电影蓝皮书:全球电影产业发展报告(2018)》,2017年全球电影票房达406亿美元,创下历史新高,相比2016年增长约5%。近十年来全球电影票房保持着增长态势,2008~2017年全球电影票房复合增长率为4.3%。随着数据量的增加,可以看出观众们对电影的质量要求越来越高,更愿意为好电影买单。

1.2项目目的

由市场使用情况来看,豆瓣网的影音社区是行业中做的比较好的,将影视评分做成几乎成了行业标准。从影评的角度来说,豆瓣网的影评内容发布门槛较低,任何人都可以在豆瓣上发表自己的短评或者长评,形成百花齐放但良莠不齐的影评内容。而我们做这个项目的初衷即将将豆瓣评论中的关键字,点赞数,评论及数量等信息呈现在用户面前,给用户该电影的直观评价。

1.3产品简介

从用户和产品的交互角度来说,用户使用豆瓣网更多的是去主动搜索影视作品,用户处于主动地位。而该项目则以原创优质影评和影视推荐为切入点,使用户处于相对主动的地位。

用户第一次打开APP时加入定制页,让可以第一时间选择关注自己喜欢的影评人以及选择偏好的影片类型。
将原本隐藏在用户这个界面中的内容在定制页也呈现出来,这样他第一次打开这个应用能看到许多内容,给用户信息量大的感觉。并且有利于精准推荐给用户想看到的内容,有利于提高用户粘性。

2.项目总体设计

2.1可行性分析

要成功地实

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值