回归分析
回归是监督学习的一个重要问题,回归用于预测输入变量和输出变量之间的关系,特别是当输入变量的值发生变化时,输出变量的值也随之发生变化。
回归模型正是表示从输入变量到输出变量之间映射的函数。
线性回归是回归分析的一种。
1.假设目标值(因变量)与特征值(自变量)之间线性相关(即满足一个多元一次方程,如:f(x)=w1x1+…+wnxn+b.)。
2.然后构建损失函数。
3.最后通过令损失函数最小来确定参数。(最关键的一步)
使用PyTorch实现多元线性回归
import torch
import numpy as np
data_x = np.random.randint(0,100,(200,3))
l = [[5.0],[2.0],[2.0]]
data_y = np.mat(data_x) * np.mat(l) + np.random.normal(0,0.05,(200,1)) + 10
data_x = torch.FloatTensor(data_x)
data_y = torch.FloatTensor(data_y)
class LinearRegression(torch.nn.Module):
def __init__(self):
super(LinearRegression,self).__init__()
self.linear = torch.nn.Linear(3,1)
def forward(self,x):
return self.linear(x)
model = LinearRegression()
criterion = torch.nn.MSELoss(size_average=True)
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
for epoch in range(50000):
outputs = model(data_x)
loss = criterion(outputs,data_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
for parameter in model.parameters():
print(parameter)
Pytorch预测结果展示 :
使用Sklearn实现多元线性回归
import numpy as np
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
data_x = np.random.randint(0,100,(200,3))
l = [[5.0],[2.0],[2.0]]
data_y = np.mat(data_x) * np.mat(l) + np.random.normal(0,0.05,(200,1)) + 10
x_train,x_test,y_train,y_test = train_test_split(data_x,data_y,test_size=0.2,random_state=0)
LR = LinearRegression()
LR.fit(x_train,y_train)
print("系数:",LR.coef_[0],LR.intercept_)
y_pred=LR.predict(X=x_test)
mse=mean_squared_error(y_true=y_test,y_pred=y_pred)
print('\nMSE:{}'.format(mse))
Sklearn预测结果展示 :