【姿态估计】MediaPipe部分solution(手势,人体姿态,面部动作)的用法

Mediapipe介绍

MediaPipe是个基于图形的跨平台框架,用于构建多模式应用的机器学习管道。

MediaPipe可在移动设备,工作站和服务器上跨平台运行,并支持移动GPU加速。使用MediaPipe,可以将应用的机器学习管道构建为模块化组件的图形。

MediaPipe专为机器学习从业者而设计包括研究人员,学生,和软件开发人员,他们实施生产就绪的ML应用程序,发布伴随研究工作的代码,以及构建技术原型。MediaPipe的主要用例上使用推理模型和其他可重用组件对应用机器学习管道进行快速原型设计。MediaPipe还有助于机器学习技术部署到各种不用硬件平台上的演示和应用程序中。
MediaPipe Solutions是基于特定的预训练TensorFlow或TFLite模型的开源预构建示例,他提供了多个Solutions,如下图所示。
在这里插入图片描述
本篇主要对手势识别,人体姿态估计,面部识别的方法进行演示,带领入门者入门。

1. 手势识别

通过MediaPipe,可以获取手部关节的21个点(如下图),以及每个点对应的坐标,那么我们就可以用坐标点来做一下项目的实际应用了, 比如手语的翻译,手势指令之类的。
在这里插入图片描述
首先导入包

import mediapipe as mp
import cv2
import numpy as np
import time

手势检测代码如下,再次我们只是展示了大拇指与食指之间的距离,然后进行了可视化展示。
获取了20个点的坐标,可以实现自己想要手势手语识别。

# 定义一个函数,计算两个点的距离
def findDis(pts1,pts2):
    return ((pts2[0]-pts1[0])**2 + (pts2[1]-pts1[1])**2)**0.5
# 创建手势检测模型
mpHands = mp.solutions.hands  # 检测人的手
hand_mode = mpHands.Hands(max_num_hands=2,min_detection_confidence=0.5,
                        min_tracking_confidence=0.5) 
# static_image_mode:默认为False,如果设置为false, 就是把输入看作一个视频流,在检测到手之后对手加了一个目标跟踪(目标检测+跟踪),
# 无需调用另一次检测,直到失去对任何手的跟踪为止。如果设置为True,则手部检测将在每个输入图像上运行(目标检测),非常适合处理一批静态的,
# 可能不相关的图像。(如果检测的是图片就要设置成True)
# 检测手的模式参数设置,max_num_hands:可以检测到的手的数量最大值,默认是2
# min_detection_confidence: 手部检测的最小置信度值,大于这个数值被认为是成功的检测,
# min_tracking_confidence:目标踪模型的最小置信度值,大于这个数值将被视为已成功跟踪的手部,如果static_image_mode设置为true,则忽略此操作。
mpDraw = mp.solutions.drawing_utils  # 绘图

cap = cv2.VideoCapture(0)

while True:
    success,img = cap.read()
    img = cv2.flip(img,1)
    results = hand_mode.process(img)# 将图片导入模型,获取20个点的坐标进行分析
    if results.multi_hand_landmarks:
        for handLms in results.multi_hand_landmarks:
            point4_8 = []
            for id,lm in enumerate(handLms.landmark):
                h,w,c = img.shape
                cx,cy = int(lm.x*w),int(lm.y*h)
                cv2.circle(img,(cx,cy),10,(255,0,0),-1)
                if id in [4,8]:# 获取点4,8的坐标
                    point4_8.append([cx,cy])
            mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
            # 求点4,8的坐标,进行可视化展示
            cv2.line(img,(point4_8[0][0],point4_8[0][1]),(point4_8[1][0],point4_8[1][1]),(0,0,255),5)
            distance = round(findDis((point4_8[0][0],point4_8[0][1]),(point4_8[1][0],point4_8[1][1])),2)
            cv2.putText(img,"distance:{}".format(distance),(50,50),cv2.FONT_HERSHEY_PLAIN, 3,(0,0,255),3)
            cv2.rectangle(img,(20,250),(20+10,250-int(distance)),(255,0,255),20)
    cv2.imshow("img",img)
    if cv2.waitKey(1)&0xFF == ord("q"):
        break
cap.release()
cv2.destroyAllWindows()

结果如下:
在这里插入图片描述

2. 人体姿势识别

人体姿势识别即是识别人体身上的32个点,本部分通过识别点23,25的位置来识别是否进行抬腿动作。通过这部分,大家可以去制作像深蹲计数、跳绳计数、摆臂等这样的功能。
在这里插入图片描述
代码如下:

mpPose = mp.solutions.pose  # 检测人的手
pose_mode = mpPose.Pose(min_detection_confidence=0.5,min_tracking_confidence=0.5)  # 模式参数设置

mpDraw = mp.solutions.drawing_utils  # 绘图

cap = cv2.VideoCapture(0)
biaoji = 0
i = 0

while True:
    success,img = cap.read()
    img = cv2.flip(img,1)
    results = pose_mode.process(img)
    if results.pose_landmarks:
        point23_25 = []
        for id,lm in enumerate(results.pose_landmarks.landmark):
            h,w,c = img.shape
            cx,cy = int(lm.x*w),int(lm.y*h)
            cv2.circle(img,(cx,cy),10,(255,0,0),-1)
            if id in [23,25]:
                point23_25.append([cx,cy])
        mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)
        cv2.line(img,(point23_25[0][0],point23_25[0][1]),(point23_25[1][0],point23_25[1][1]),(0,0,255),5)
        if point23_25[0][1]>point23_25[1][1]:
            if biaoji == 1:
                i += 1
                biaoji = 0
                cv2.putText(img,"Leg up--{}".format(i),(10,50),cv2.FONT_HERSHEY_PLAIN, 3,(0,0,255),3)
        else:
            biaoji = 1
            cv2.putText(img,"Leg down--{}".format(i),(10,450),cv2.FONT_HERSHEY_PLAIN, 3,(0,0,255),3)
    cv2.imshow("img",img)
    if cv2.waitKey(1)&0xFF == ord("q"):
        break
cap.release()
cv2.destroyAllWindows()

结果可视化展示:
在这里插入图片描述

3. 面部动作识别

mediapip的人脸关键点一共有468个我在图中只看到467最大值,但是实际代码输出的478的关键点,从输出结果索引468-472存储的是人眼左边5个关键点,473-477存储的是人眼右边5个关键点。关键点图在网上还有点难找因此放这里,图片需要放大才能开清楚位置数字。在这里插入图片描述
本文选取左眼【130,240,23,159】四个点和嘴巴【62,292,12,15】四个点,通过计算四个点之间的关系,来判断眼睛和嘴巴是否处于张开状态。这对于疲劳检测具有一定的借鉴意义。代码如下:

def findDis(pts1,pts2):
    return ((pts2[0]-pts1[0])**2 + (pts2[1]-pts1[1])**2)**0.5

cap = cv2.VideoCapture(0)
pTime = 0

id_list = [23, 159, 130, 243, 62, 292, 12, 15]

mpDraw = mp.solutions.drawing_utils
mpFaceMesh = mp.solutions.face_mesh
faceMesh = mpFaceMesh.FaceMesh(max_num_faces=2)
drawSpec = mpDraw.DrawingSpec(thickness=1, circle_radius=2)

while True:
    success, img = cap.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = faceMesh.process(imgRGB)
    if results.multi_face_landmarks:
        for faceLms in results.multi_face_landmarks:
            mpDraw.draw_landmarks(img, faceLms, mpFaceMesh.FACEMESH_CONTOURS,
                                  drawSpec,drawSpec)
            mp_data = []
            for id,lm in enumerate(faceLms.landmark):
                ih, iw, ic = img.shape
                x,y = int(lm.x*iw), int(lm.y*ih)
                if id in id_list:           #左眼[22, 23, 24, 26, 110, 157, 158, 159, 160, 161, 130, 243]:
                    mp_data.append([x,y])
                    cv2.circle(img,(x,y),2,(255,0,0),-1)
            eye_length_1 = findDis(mp_data[0],mp_data[1])
            eye_length_2 = findDis(mp_data[2],mp_data[3])
            mouth_length_2 = findDis(mp_data[4],mp_data[5])
            mouth_length_1 = findDis(mp_data[6],mp_data[7])
#             print(eye_length_1,eye_length_2)
            if ((mouth_length_1/mouth_length_2)<(98/18)):
                cv2.putText(img,"mouth close",(400,50),cv2.FONT_HERSHEY_PLAIN, 2,(0,0,255),3)
                    
            else:
                cv2.putText(img,"mouth open",(400,50),cv2.FONT_HERSHEY_PLAIN, 2,(0,0,255),3)
            if (eye_length_2/eye_length_1)>18:
                cv2.putText(img,"eye open",(400,100),cv2.FONT_HERSHEY_PLAIN, 2,(0,0,255),3)  
            else:                 
                cv2.putText(img,"eye close",(400,100),cv2.FONT_HERSHEY_PLAIN, 2,(0,0,255),3)  

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime
    cv2.putText(img, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN,
                3, (255, 0, 0), 3)
    cv2.imshow("Image", img)
    if cv2.waitKey(1)&0xFF == ord("q"):
        cv2.imwrite("6.jpg",img)
        break
cap.release()
cv2.destroyAllWindows()

结果展示:
在这里插入图片描述

总结

无论是手势,人体姿态,还是人脸检测,都是对于点位的检测,通过点位坐标实现一系列功能。对于手势点位检测,我们可以实现手语识别,对于人体姿势点位检测,可以实现人体动作,当下有那些跳绳计数、深蹲计数的App也是这么个原理;对于人脸检测,通过点位坐标检测,可以实现疲劳检测。这里不做多述,有兴趣者可以做各种有趣的事情。

<think>好的,我现在要处理用户关于“视觉跳绳计数”的询问。首先,我需要理解用户的具体需求。他们可能想知道如何通过计算机视觉技术来自动计数跳绳的次数,可能的应用场景比如健身追踪、体育训练或者游戏互动。接下来,我需要分解这个问题的关键点。 首先,视觉跳绳计数主要依赖哪些技术?这应该涉及目标检测、动作识别、运动追踪等。然后要考虑具体步骤,比如如何捕捉跳绳者的动作,如何处理视频流,如何判断一次完整的跳绳动作。此外,可能遇到的挑战,比如光照变化、遮挡、快速运动导致的模糊,以及如何解决这些挑战。 接下来,我需要组织回答的结构。先定义什么是视觉跳绳计数,然后分步骤介绍其工作原理,可能用到的算法和技术,比如使用卷积神经网络(CNN)进行姿态估计,或者光流法追踪运动轨迹。同时,需要提到数据预处理,比如帧提取、背景减除,以及后处理中的计数逻辑,比如通过检测手腕或脚部的周期性运动来判断次数。 还要考虑实际应用中的难点,比如不同人的跳绳速度差异,多人同时跳绳的情况,以及系统的实时性要求。可能需要提到现有的研究成果或商业产品,比如一些基于智能手机应用的例子,或者学术论文中提出的方法。 另外,用户可能对技术细节感兴趣,比如是否需要深度学习模型,是否需要大量的训练数据,或者设备的硬件要求。同时,可能需要简要说明准确率的影响因素和提升方法,比如使用更高帧率的摄像头,或者结合传感器数据融合。 最后,确保回答符合之前提到的系统级指令,正确使用LaTeX格式,结构清晰,分步骤解释,避免使用Markdown,用中文口语化表达,但不过于随意。需要检查是否有遗漏的关键点,比如是否提到实时处理、系统延迟、错误计数的情况如何处理等。 现在开始组织内容,确保每个部分逻辑连贯,技术术语解释清楚,同时保持简洁易懂。可能还需要举例子,比如当手部到达最高点时计为一次,或者通过检测脚部离地次数。同时,对比不同方法的优缺点,比如基于穿戴式传感器与纯视觉方案的差异。 总结下来,回答应该涵盖定义、技术原理、关键步骤、挑战与解决方案,以及应用实例。确保信息准确,如有不确定的地方,比如某些算法的具体表现,需要查证或说明可能存在的变化。整个过程要保持自然,避免使用专业术语堆砌,让用户能够轻松理解。</think>视觉跳绳计数是一种通过计算机视觉技术自动检测并统计跳绳次数的应用。其核心在于捕捉人体运动特征并分析周期性动作。以下是分步介绍: 1. **视频输入与预处理** 使用摄像头或视频流(帧率≥30fps为宜)捕捉跳绳者动作。预处理步骤包括: - **背景减除**:分离运动主体(如用高斯混合模型) - **降噪**:通过高斯滤波消除环境干扰 $$ G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}} $$ - **关键点检测**:定位手腕、脚踝等关节(如OpenPose或MediaPipe) 2. **运动轨迹分析** - **时空特征提取**:跟踪手腕/绳子的抛物线运动 - **周期检测**:通过傅里叶变换分析运动频率 $$ X(f) = \int_{-\infty}^{\infty}x(t)e^{-j2\pi ft}dt $$ - **峰值判定**:当手腕达到最高点或绳子触地时计为1次 3. **计数逻辑实现** - **状态机设计**:定义“上摆→下摆→过地”等状态转移条件 - **容错机制**:通过滑动窗口验证连续动作的完整性 - **实时显示**:结合GUI输出累计次数和速率(次/分钟) **主要技术挑战与解决方案**: - **快速运动模糊**:使用高帧率相机(120fps+)或运动去模糊算法 - **遮挡问题**:多视角摄像头融合或基于LSTM的时序预测 - **光照变化**:自适应直方图均衡化(CLAHE) - **多人场景**:通过Instance Segmentation区分个体 **典型应用场景**: - 体育课堂自动考核(误差<±2次/分钟) - 健身APP(如Keep已上线类似功能) - 智能跳绳硬件(如华为手环+手机联动) 当前主流方案的准确率可达95%以上,但极端情况(如双摇跳)仍需结合IMU传感器数据融合提升可靠性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值