三、高阶常微分方程
3.1 线性常微分方程通解的结构
n阶线性常微分方程的一般形式为:
y
(
k
)
+
p
1
(
x
)
y
(
n
−
1
)
+
.
.
.
+
p
n
−
1
(
x
)
y
′
+
p
n
(
x
)
y
=
f
(
x
)
,
(
3
−
1
)
y^{(k) }+ p_1(x)y^{(n-1)}+...+ p_{n-1}(x)y^{'}+ p_n(x)y = f(x), \qquad (3-1)
y(k)+p1(x)y(n−1)+...+pn−1(x)y′+pn(x)y=f(x),(3−1)
y
(
k
)
+
p
1
(
x
)
y
(
n
−
1
)
+
.
.
.
+
p
n
−
1
(
x
)
y
′
+
p
n
(
x
)
y
=
0
(
齐
次
)
,
(
3
−
2
)
y^{(k) }+ p_1(x)y^{(n-1)}+...+ p_{n-1}(x)y^{'}+ p_n(x)y = 0(齐次), \qquad (3-2)
y(k)+p1(x)y(n−1)+...+pn−1(x)y′+pn(x)y=0(齐次),(3−2)
3.1.1. 齐次高阶通解(讨论了解的性质,并未求解)
定理1: 叠加原理
如果
y
1
(
x
)
,
y
2
(
x
)
,
.
.
.
,
y
k
(
x
)
y_1(x),y_2(x),...,y_k(x)
y1(x),y2(x),...,yk(x)为方程(3-2)的k个解,则对任意常数:
C
1
,
C
2
,
.
.
.
,
C
k
C_1,C_2,...,C_k
C1,C2,...,Ck,函数
y
=
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
+
.
.
.
+
C
k
y
k
(
x
)
y= C_1y_1(x)+ C_2y_2(x)+...+C_ky_k(x)
y=C1y1(x)+C2y2(x)+...+Ckyk(x)也是方程的解。
定义1: 设
y
1
(
x
)
,
y
2
(
x
)
,
.
.
.
,
y
k
(
x
)
y_1(x),y_2(x),...,y_k(x)
y1(x),y2(x),...,yk(x)定义在区间I上,存在不全为零的常数
C
1
,
C
2
,
.
.
.
,
C
k
C_1,C_2,...,C_k
C1,C2,...,Ck使得
∀
x
∈
I
\forall x \in I
∀x∈I有
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
+
.
.
.
+
C
k
y
k
(
x
)
=
0
C_1y_1(x)+ C_2y_2(x)+...+C_ky_k(x)= 0
C1y1(x)+C2y2(x)+...+Ckyk(x)=0则称这n个函数在区间I上是线性相关的,否则线性无关。
定义2: 由定义在区间I上的n个n-1次函数
y
1
(
x
)
,
y
2
(
x
)
,
…
,
y
n
(
x
)
y_1(x),y_2(x),\ldots,y_n(x)
y1(x),y2(x),…,yn(x)构成的行列式
W
(
x
)
=
∣
y
1
(
x
)
y
2
(
x
)
⋯
y
k
(
x
)
y
1
′
(
x
)
y
2
′
(
x
)
⋯
y
k
′
(
x
)
⋮
⋮
⋯
⋮
y
1
n
−
1
(
x
)
y
2
n
−
1
(
x
)
⋯
y
k
n
−
1
(
x
)
∣
W(x)=\left | \begin{array}{cccc} y_1(x) & y_2(x) & \cdots & y_k(x)\\ y_1'(x) & y_2'(x) & \cdots & y_k'(x)\\ \vdots & \vdots & \cdots & \vdots\\ y_1^{n-1}(x) & y_2^{n-1}(x) & \cdots & y_k^{n-1}(x)\\ \end{array} \right|
W(x)=∣∣∣∣∣∣∣∣∣y1(x)y1′(x)⋮y1n−1(x)y2(x)y2′(x)⋮y2n−1(x)⋯⋯⋯⋯yk(x)yk′(x)⋮ykn−1(x)∣∣∣∣∣∣∣∣∣称为这n个函数的朗斯基行列式(Wronsky).
定理2: n阶齐次线性方程(3-2)的n个解 y 1 ( x ) , y 2 ( x ) , … , y k ( x ) y_1(x),y_2(x),\ldots,y_k(x) y1(x),y2(x),…,yk(x)定义在区间I上线性无关的充要条件是在I上存在 点 x 0 x_0 x0 使得他们的朗斯基行列式 W ( x 0 ) ≠ 0 W(x_0) \neq 0 W(x0)=0 .
定理3: 若n个解
y
1
(
x
)
,
y
2
(
x
)
,
…
,
y
k
(
x
)
y_1(x),y_2(x),\ldots,y_k(x)
y1(x),y2(x),…,yk(x)是方程(3-2)在区间I上的线性无关解,那么(3-2)的通解可表示为:
y
=
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
+
.
.
.
+
C
n
y
k
(
n
)
,
(
3
−
3
)
y= C_1y_1(x)+ C_2y_2(x)+...+C_ny_k(n),\quad (3-3)
y=C1y1(x)+C2y2(x)+...+Cnyk(n),(3−3)它包含了所有解。
推论: 方程(3-2)线性无关解组中包含的解的个数最大为n 个。
这n个线性无关解称为方程的基本解组。
例:
y
′
′
+
p
1
(
x
)
y
′
+
p
2
y
=
0
,
已
知
其
一
个
解
为
y
1
,
求
另
一
个
线
性
无
关
解
.
y'' + p_1(x)y' + p_2y = 0\quad ,已知其一个解为y_1,求另一个线性无关解.
y′′+p1(x)y′+p2y=0,已知其一个解为y1,求另一个线性无关解.
设
:
y
2
=
C
(
x
)
y
1
,
设:y_2 = C(x)y_1, \\
设:y2=C(x)y1,
y
2
′
=
C
(
x
)
′
y
1
+
C
(
x
)
y
1
′
,
y_2' = C(x)'y_1 + C(x)y_1',\\
y2′=C(x)′y1+C(x)y1′,
y
2
′
′
=
C
(
x
)
′
′
y
1
+
2
C
(
x
)
′
y
1
′
+
C
(
x
)
y
1
′
′
.
y_2'' = C(x)''y_1 + 2C(x)'y_1' + C(x)y_1''.
y2′′=C(x)′′y1+2C(x)′y1′+C(x)y1′′.
带
入
方
程
得
:
y
1
C
(
x
)
′
′
+
(
2
y
1
′
+
p
1
y
1
)
C
(
x
)
′
+
(
y
1
′
′
+
p
1
y
1
′
+
p
2
)
C
(
x
)
=
0
,
带入方程得: y_1C(x)'' + (2y_1' + p_1y_1)C(x)' + (y_1'' + p_1y_1' +p_2)C(x) = 0,
带入方程得:y1C(x)′′+(2y1′+p1y1)C(x)′+(y1′′+p1y1′+p2)C(x)=0,
得
:
y
1
C
(
x
)
′
′
+
(
2
y
1
′
+
p
1
y
1
)
C
(
x
)
′
=
0
,
变
量
分
离
法
可
得
得:y_1C(x)'' + (2y_1' + p_1y_1)C(x)' = 0,变量分离法可得
得:y1C(x)′′+(2y1′+p1y1)C(x)′=0,变量分离法可得
y
2
=
C
(
x
)
y
1
=
y
1
∫
e
−
∫
p
1
d
x
y
1
2
d
x
,
(
3
−
4
)
y_2 = C(x)y_1 = y_1\int \frac{e^{-\int p_1dx}}{y_1^2}dx,\quad(3-4)
y2=C(x)y1=y1∫y12e−∫p1dxdx,(3−4)
显
然
y
1
,
y
2
线
性
无
关
显然y_1,y_2线性无关 \\
显然y1,y2线性无关
3.1.2.非齐次高阶通解(介绍了通用的已知齐次基本解组求解特解的方法)
定理4: 设y*是方程(3-1)的一个特解, y ‾ \overline{y} y是(3_2)的通解,则(3-1)的通解是 y ∗ + y ‾ y^* + \overline{y} y∗+y.
\qquad 在上一篇文章2.2中我们使用常数变易法求解了一阶非齐次常微分方程的解(在求出齐次解的情况下,推导非齐次);对于高阶常微分方程我们采取相同的策略,由齐次基本解组推导出非齐次的特解。
(1)求 C i ( x ) C_i(x) Ci(x):
设方程(3-2)的通解是(3-3),我们假设特解的形式是将常数
C
i
C_i
Ci换为
C
i
(
x
)
C_i(x)
Ci(x),即:
y
=
C
1
(
x
)
y
1
(
x
)
+
C
2
(
x
)
y
2
(
x
)
+
.
.
.
+
C
n
(
x
)
y
k
(
n
)
,
(
3
−
5
)
y= C_1(x)y_1(x)+ C_2(x)y_2(x)+...+C_n(x)y_k(n),\quad (3-5)
y=C1(x)y1(x)+C2(x)y2(x)+...+Cn(x)yk(n),(3−5)
\qquad
求解出
C
i
(
x
)
C_i(x)
Ci(x)就可以确定特解,由于存在n个待定函数,因此求解还需要n-1个限制条件,这些条件按理说可以随意设置(这个地方需要理解一下随意设置的含义是什么:我的理解是就像是对于方程
f
(
x
)
=
x
,
我
们
在
实
数
R
范
围
内
可
以
令
x
=
s
h
(
t
)
,
x
=
t
a
n
(
t
)
等
等
f(x) = x,我们在实数R范围内可以令x = sh(t),x = tan(t)等等
f(x)=x,我们在实数R范围内可以令x=sh(t),x=tan(t)等等).
\qquad
当然随意设置之后得到的方程越简单越好。这里采用的方式是对通解多次求导的方式来获得n-1个条件如下,在前n-1次求导的过程中将含有
C
i
′
(
x
)
C_i'(x)
Ci′(x)的项求和设为0 :
y
′
=
C
1
(
x
)
y
1
′
(
x
)
+
C
2
(
x
)
y
2
′
(
x
)
+
.
.
.
+
C
n
(
x
)
y
k
′
(
n
)
+
0
,
(
1
)
y'= C_1(x)y_1'(x)+ C_2(x)y_2'(x)+...+C_n(x)y_k'(n) + 0,\quad (1)
y′=C1(x)y1′(x)+C2(x)y2′(x)+...+Cn(x)yk′(n)+0,(1)
0
=
C
1
′
(
x
)
y
1
(
x
)
+
C
2
′
(
x
)
y
2
(
x
)
+
.
.
.
+
C
n
′
(
x
)
y
k
(
n
)
,
(
1.1
)
0 = C_1'(x)y_1(x)+ C_2'(x)y_2(x)+...+C_n'(x)y_k(n),\quad (1.1)
0=C1′(x)y1(x)+C2′(x)y2(x)+...+Cn′(x)yk(n),(1.1)
y
′
′
=
C
1
(
x
)
y
1
′
′
(
x
)
+
C
2
(
x
)
y
2
′
′
(
x
)
+
.
.
.
+
C
n
(
x
)
y
k
′
′
(
n
)
+
0
,
(
2
)
y''= C_1(x)y_1''(x)+ C_2(x)y_2''(x)+...+C_n(x)y_k''(n) + 0,\quad (2)
y′′=C1(x)y1′′(x)+C2(x)y2′′(x)+...+Cn(x)yk′′(n)+0,(2)
0
=
C
1
′
(
x
)
y
1
′
(
x
)
+
C
2
′
(
x
)
y
2
′
(
x
)
+
.
.
.
+
C
n
′
(
x
)
y
k
′
(
n
)
,
(
2.1
)
0 = C_1'(x)y_1'(x)+ C_2'(x)y_2'(x)+...+C_n'(x)y_k'(n),\quad (2.1)
0=C1′(x)y1′(x)+C2′(x)y2′(x)+...+Cn′(x)yk′(n),(2.1)
⋮
\vdots
⋮
y
n
−
1
=
C
1
y
1
n
−
1
(
x
)
+
C
2
y
2
n
−
1
(
x
)
+
.
.
.
+
C
n
y
k
n
−
1
(
n
)
+
0
,
(
n
−
1
)
y^{n-1}= C_1y_1^{n-1}(x)+ C_2y_2^{n-1}(x)+...+C_ny_k^{n-1}(n) + 0,\quad (n-1)
yn−1=C1y1n−1(x)+C2y2n−1(x)+...+Cnykn−1(n)+0,(n−1)
0
=
C
1
′
(
x
)
y
1
′
(
x
)
+
C
2
′
(
x
)
y
2
′
(
x
)
+
.
.
.
+
C
n
′
(
x
)
y
k
′
(
n
)
,
(
n
−
1.1
)
\qquad0 = C_1'(x)y_1'(x)+ C_2'(x)y_2'(x)+...+C_n'(x)y_k'(n),\quad (n-1.1)
0=C1′(x)y1′(x)+C2′(x)y2′(x)+...+Cn′(x)yk′(n),(n−1.1)
y
n
=
C
1
(
x
)
y
1
n
(
x
)
+
C
2
(
x
)
y
2
n
(
x
)
+
.
.
.
+
C
n
(
x
)
y
k
n
(
n
)
+
y^{n}= C_1(x)y_1^{n}(x)+ C_2(x)y_2^{n}(x)+...+C_n(x)y_k^{n}(n)+\qquad
yn=C1(x)y1n(x)+C2(x)y2n(x)+...+Cn(x)ykn(n)+
C
1
′
(
x
)
y
1
n
−
1
(
x
)
+
C
2
′
(
x
)
y
2
n
−
1
(
x
)
+
.
.
.
+
C
n
′
(
x
)
y
k
n
−
1
(
n
)
,
(
n
)
C_1'(x)y_1^{n-1}(x)+ C_2'(x)y_2^{n-1}(x)+...+C_n'(x)y_k^{n-1}(n),\quad (n)
C1′(x)y1n−1(x)+C2′(x)y2n−1(x)+...+Cn′(x)ykn−1(n),(n)将上面式子(i)带入方程(3-1),每个式子的对应位置的项相加求和为(3-2)解,故获得最终化简式:
C
1
′
(
x
)
y
1
n
−
1
(
x
)
+
C
2
′
(
x
)
y
2
n
−
1
(
x
)
+
.
.
.
+
C
n
′
(
x
)
y
k
n
−
1
(
n
)
=
f
(
x
)
,
(
n
.
1
)
.
C_1'(x)y_1^{n-1}(x)+ C_2'(x)y_2^{n-1}(x)+...+C_n'(x)y_k^{n-1}(n) = f(x),\quad (n.1).
C1′(x)y1n−1(x)+C2′(x)y2n−1(x)+...+Cn′(x)ykn−1(n)=f(x),(n.1).由(i.1)组成n个微分方程组:
∣
0
0
⋮
f
(
x
)
∣
=
∣
y
1
(
x
)
y
2
(
x
)
⋯
y
k
(
x
)
y
1
′
(
x
)
y
2
′
(
x
)
⋯
y
k
′
(
x
)
⋮
⋮
⋯
⋮
y
1
n
−
1
(
x
)
y
2
n
−
1
(
x
)
⋯
y
k
n
−
1
(
x
)
∣
⋅
∣
C
1
′
(
x
)
C
2
′
(
x
)
⋮
C
n
′
(
x
)
∣
=
A
⋅
B
(
3
−
6
)
\left | \begin{array}{cccc} 0\\ 0\\ \vdots \\ f(x)\\ \end{array} \right| =\left | \begin{array}{cccc} y_1(x) & y_2(x) & \cdots & y_k(x)\\ y_1'(x) & y_2'(x) & \cdots & y_k'(x)\\ \vdots & \vdots & \cdots & \vdots\\ y_1^{n-1}(x) & y_2^{n-1}(x) & \cdots & y_k^{n-1}(x)\\ \end{array} \right| ·\left | \begin{array}{cccc} C_1'(x)\\ C_2'(x)\\ \vdots\\ C_n'(x)\\ \end{array} \right| =A·B\quad(3-6)
∣∣∣∣∣∣∣∣∣00⋮f(x)∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣y1(x)y1′(x)⋮y1n−1(x)y2(x)y2′(x)⋮y2n−1(x)⋯⋯⋯⋯yk(x)yk′(x)⋮ykn−1(x)∣∣∣∣∣∣∣∣∣⋅∣∣∣∣∣∣∣∣∣C1′(x)C2′(x)⋮Cn′(x)∣∣∣∣∣∣∣∣∣=A⋅B(3−6)显然A是Wronsky行列式,由于基本解组是线性无关的,
∣
A
∣
≠
0
|A| \neq 0
∣A∣=0,(3-6)有唯一解。
设 C i ′ ( x ) = φ i ( x ) C_i'(x) = \varphi_i(x) Ci′(x)=φi(x),积分可得 C i ( x ) C_i(x) Ci(x).
高阶非齐次常微分方程的解为:
y
=
∑
i
=
1
n
k
i
y
i
(
x
)
+
∑
i
=
1
n
y
i
(
x
)
∫
φ
i
(
x
)
d
x
.
y = \sum_{i = 1}^nk_iy_i(x) + \sum_{i = 1}^ny_i(x)\int \varphi_i(x)dx.
y=i=1∑nkiyi(x)+i=1∑nyi(x)∫φi(x)dx.
(2)例程
3.2 常系数齐次线性常微分方程(由二阶常微分方程求解推广到高阶)
\qquad 在3.1节中我们介绍了高阶常微分方程的解的结构,但是从上面两个例子来看高阶常微分方程的求解是比较麻烦的。我们先解决二阶常微分方程,并将其解法类似推广到高阶常微分方程。
3.2.1. 二阶常系数齐次微分方程求解
\qquad
二阶常微分方程的一般形式为:
y
′
′
+
p
1
y
′
+
p
2
y
=
0.
(
3
−
7
)
y'' + p_1y' +p_2y = 0.\qquad (3-7)
y′′+p1y′+p2y=0.(3−7)
我们设
y
=
e
r
x
y=e^{rx}
y=erx,它的各阶导数只相差一个因子r;将其代入方程(3-7),有:
y
(
r
2
+
p
1
(
x
)
r
+
1
)
=
0
,
y
≢
0
y(r^2 + p_1(x)r + 1) = 0,\quad y \not\equiv 0
y(r2+p1(x)r+1)=0,y≡0
故
得
到
特
征
方
程
:
r
2
+
p
1
r
+
1
≡
0.
故得到特征方程:\quad r^2 + p_1r + 1 \equiv 0.
故得到特征方程:r2+p1r+1≡0.
(1)
r
1
≠
r
2
,
y
=
C
1
e
r
1
x
+
C
2
e
r
2
x
r_1 \neq r_2 ,y = C_1e^{r_1x} + C_2e^{r_2x}
r1=r2,y=C1er1x+C2er2x
(2)
r
1
=
r
2
,
y
=
(
C
1
+
C
2
x
)
e
r
1
x
r_1 = r_2 ,y = (C_1 + C_2x)e^{r_1x}
r1=r2,y=(C1+C2x)er1x,利用了3.1中例题的结论。
(3)
r
1
,
r
2
r_1,r_2
r1,r2是一对共轭虚根
α
±
i
β
\alpha \pm i\beta
α±iβ时,y有(1)的形式,即:
y
1
=
e
a
x
(
c
o
s
β
x
+
i
s
i
n
β
x
)
y
2
=
e
a
x
(
c
o
s
β
x
−
i
s
i
n
β
x
)
y_1 = e^{ax}(cos \beta x + isin \beta x)\quad y_2 = e^{ax}(cos \beta x - isin \beta x)
y1=eax(cosβx+isinβx)y2=eax(cosβx−isinβx)
y
=
C
1
e
r
1
x
+
C
2
e
r
2
x
y = C_1e^{r_1x} + C_2e^{r_2x}
y=C1er1x+C2er2x
令
C
3
=
(
C
1
+
C
2
)
/
2
,
C
4
=
(
C
1
−
C
2
)
/
2
i
令C_3 = (C_1 + C_2)/2,\quad C_4 = (C_1 - C_2)/2i
令C3=(C1+C2)/2,C4=(C1−C2)/2i
y
=
e
a
x
(
C
3
c
o
s
β
x
+
C
4
s
i
n
β
x
)
,
C
i
是
复
数
y = e^{ax}(C_3 cos \beta x + C_4sin \beta x),\quad C_i是复数
y=eax(C3cosβx+C4sinβx),Ci是复数
3.2.2. 推广到高阶
高阶时我们同样列出特征方程,分析根的组成结构类似二阶常系数齐次微分方程,我们可以得到:
3.3 常系数非齐次线性常微分方程
3.3.1 待定系数法(仍然以二阶为例,推广高阶)
\qquad
二阶常微分方程的一般形式为:
y
′
′
+
p
1
y
′
+
p
2
y
=
f
(
x
)
.
(
3
−
8
)
y'' + p_1y' +p_2y = f(x).\qquad (3-8)
y′′+p1y′+p2y=f(x).(3−8)
类型Ⅰ
f ( x ) = e λ x P m , P m 是 m 次 多 项 式 ; y ∗ = e λ x Q ( x ) 为 方 程 的 特 解 , Q ( x ) 为 多 项 式 f(x) = e^{\lambda x} P_m,\quad P_m是m次多项式;y^* = e^{\lambda x} Q(x)为方程的特解,Q(x)为多项式 f(x)=eλxPm,Pm是m次多项式;y∗=eλxQ(x)为方程的特解,Q(x)为多项式。
将 f ( x ) f(x) f(x) 和 y ∗ y^* y∗带入方程(3-8)有:
( λ 2 + p 1 λ + p 2 ) Q ( x ) + ( 2 λ + p 1 ) Q ′ ( x ) + Q ′ ′ ( x ) = P m ( x ) , ( 3 − 9 ) (\lambda ^2 + p_1\lambda + p_2)Q(x) + (2\lambda + p_1)Q'(x) + Q''(x) = P_m(x),\quad (3-9) (λ2+p1λ+p2)Q(x)+(2λ+p1)Q′(x)+Q′′(x)=Pm(x),(3−9)
- λ \lambda λ 不是方程 λ 2 + p 1 λ + p 2 = 0 \lambda ^2 + p_1\lambda + p_2 = 0 λ2+p1λ+p2=0的根, Q ( x ) Q(x) Q(x)和 P m ( x ) P_m(x) Pm(x)次数相同,将 λ \lambda λ带入方程(3-9),求取对应幂次的系数即可。
-
λ
\lambda
λ 是方程的单根时,式(3-9)变为
( 2 λ + p 1 ) Q ′ ( x ) + Q ′ ′ ( x ) = P m ( x ) , (2\lambda + p_1)Q'(x) + Q''(x) = P_m(x), (2λ+p1)Q′(x)+Q′′(x)=Pm(x), 设 Q ( x ) = x Q m ( x ) , 求 取 对 应 幂 次 的 系 数 即 可 。 设Q(x) = xQ_m(x),求取对应幂次的系数即可。 设Q(x)=xQm(x),求取对应幂次的系数即可。 这 里 实 际 上 是 Q ( x ) = ( a x + b ) Q m ( x ) , 但 是 一 次 求 导 之 后 等 效 Q ( x ) = x Q m ( x ) , 即 省 略 了 常 数 项 。 这里实际上是Q(x) = (ax + b)Q_m(x),但是一次求导之后等效Q(x) = xQ_m(x),即省略了常数项。 这里实际上是Q(x)=(ax+b)Qm(x),但是一次求导之后等效Q(x)=xQm(x),即省略了常数项。 -
λ
\lambda
λ 是方程的重根时,式(3-9)变为
Q ′ ′ ( x ) = P m ( x ) , Q''(x) = P_m(x), Q′′(x)=Pm(x), 同 理 设 Q ( x ) = x 2 Q m ( x ) , 求 取 对 应 幂 次 的 系 数 即 可 。 同理设Q(x) = x^2Q_m(x),求取对应幂次的系数即可。 同理设Q(x)=x2Qm(x),求取对应幂次的系数即可。
该结论可以推广到高阶,例如下:
类型Ⅱ
f ( x ) = e a x [ P l ( x ) c o s β x + Q m ( x ) s i n ( β x ) ] , P l 是 l 次 多 项 式 , Q m 是 m 次 多 项 式 f(x) = e^{ax} [P_l(x)cos \beta x + Q_m(x)sin(\beta x)],\quad P_l是l次多项式,Q_m是m次多项式 f(x)=eax[Pl(x)cosβx+Qm(x)sin(βx)],Pl是l次多项式,Qm是m次多项式。
1.这种形式的方程有如下特解:
y
∗
=
x
∗
k
e
a
x
[
R
n
(
1
)
(
x
)
c
o
s
β
x
+
R
n
(
2
)
(
x
)
s
i
n
β
x
]
,
R
n
(
x
)
是
n
次
多
项
式
y^* = x*ke^{ax}[R_n^{(1)}(x)cos\beta x + R_n^{(2)}(x)sin\beta x],R_n(x)是n次多项式
y∗=x∗keax[Rn(1)(x)cosβx+Rn(2)(x)sinβx],Rn(x)是n次多项式
λ
=
α
±
i
β
是
方
程
的
根
的
时
候
k
=
1
,
否
则
为
0
;
n
=
m
a
x
{
l
,
m
}
\lambda = \alpha \pm i\beta是方程的根的时候k= 1,否则为0;n = max\{l,m\}
λ=α±iβ是方程的根的时候k=1,否则为0;n=max{l,m}
2.书中该结论的证明以复杂为理由省略,我自己粗略证明了一下(思路就是将类型Ⅰ扩充到复数域):
-
先求解下面方程的解:
当 f ( x ) = e α x P l ( x ) c o s β x = e ( α + i β ) x + e ( α + i β ) x 2 P l ( x ) , λ 1 = α + i β , λ 2 = α − i β . 当f(x) = e^{\alpha x} P_l(x)cos\beta x =\frac{e^{(\alpha + i\beta)x} + e^{(\alpha + i\beta)x}}2P_l(x),\quad \lambda _1= \alpha + i\beta,\lambda_2 = \alpha - i\beta. 当f(x)=eαxPl(x)cosβx=2e(α+iβ)x+e(α+iβ)xPl(x),λ1=α+iβ,λ2=α−iβ. 根 据 类 型 Ⅰ 中 的 分 析 , 我 们 可 以 知 道 λ 1 , 2 只 可 能 是 方 程 λ 2 + p 1 λ + p 2 = 0 的 单 根 或 者 不 是 根 , 因 为 λ 是 虚 数 。 根据类型Ⅰ中的分析,我们可以知道\lambda _1,_2 只可能是方程\lambda ^2 + p_1\lambda + p_2 = 0的单根或者不是根,因为\lambda 是虚数。 根据类型Ⅰ中的分析,我们可以知道λ1,2只可能是方程λ2+p1λ+p2=0的单根或者不是根,因为λ是虚数。 设 特 解 为 : y 1 ∗ = x k ( R l ( 1 ) ( x ) e λ 1 x + ( R l ( 2 ) ( x ) e λ 2 x ) 设特解为:y_1^* = x^k(R_l^{(1)}(x) e^{\lambda _1 x} + (R_l^{(2)}(x) e^{\lambda _2 x}) 设特解为:y1∗=xk(Rl(1)(x)eλ1x+(Rl(2)(x)eλ2x) -
同理当 g ( x ) = e a x Q m ( x ) s i n β x g(x) = e^{ax} Q_m(x)sin\beta x g(x)=eaxQm(x)sinβx,有以下形式的特解:
y 2 ∗ = x k ( R m ( 1 ) ( x ) e λ 1 x + ( R m ( 2 ) ( x ) e λ 2 x ) . y_2^* = x^k(R_m^{(1)}(x) e^{\lambda _1 x} + (R_m^{(2)}(x) e^{\lambda _2 x}). y2∗=xk(Rm(1)(x)eλ1x+(Rm(2)(x)eλ2x). -
故高阶常微分方程等号右边为f(x)+g(x)时,有特解:
y ∗ = x k ( R l ( 1 ) ( x ) e λ 1 x + ( R l ( 2 ) ( x ) e λ 2 x + R m ( 1 ) ( x ) e λ 1 x + ( R m ( 2 ) ( x ) e λ 2 x ) . y^* = x^k(R_l^{(1)}(x) e^{\lambda _1 x} + (R_l^{(2)}(x) e^{\lambda _2 x} + R_m^{(1)}(x) e^{\lambda _1 x} + (R_m^{(2)}(x) e^{\lambda _2 x}). y∗=xk(Rl(1)(x)eλ1x+(Rl(2)(x)eλ2x+Rm(1)(x)eλ1x+(Rm(2)(x)eλ2x).很容易将上式组合成为
y ∗ = x k e α x [ R n ( 1 ) ( x ) c o s β x + R n ( 2 ) ( x ) s i n β x ] , n = m a x { l , m } , 得 证 . y^* = x^ke^{\alpha x}[R_n^{(1)}(x)cos\beta x + R_n^{(2)}(x)sin\beta x],\quad n = max\{l,m\},得证. y∗=xkeαx[Rn(1)(x)cosβx+Rn(2)(x)sinβx],n=max{l,m},得证.
同样给出简单例子:
3.3.2 拉普拉斯变换法
\qquad 积分上看Laplace变换是加了条件的Fourier变换,限制了函数的收敛速率 e − s t e^{-st} e−st。无论是在高阶常微分方程还是常微分方程组的求解过程中都发挥着重要的作用。
- 定义: L [ f ( x ) ] = ∫ 0 ∞ f ( t ) e − s t d t L[f(x)] = \int_0^{\infty}f(t)e^{-st}dt L[f(x)]=∫0∞f(t)e−stdt
- 性质1:线性性质, L [ α f ( x ) + β g ( x ) ] = α L [ f ( x ) ] + β L [ g ( x ) ] L[\alpha f(x)+\beta g(x)] =\alpha L[f(x)] +\beta L[g(x)] L[αf(x)+βg(x)]=αL[f(x)]+βL[g(x)]
- 性质2:原函数的微分性质
L [ f ′ ( t ) ] = ∫ 0 ∞ f ′ ( t ) e − s t d t L[f'(t)] = \int_0^{\infty}f'(t)e^{-st}dt L[f′(t)]=∫0∞f′(t)e−stdt = f ( t ) e − s t ∣ 0 ∞ + s ∫ 0 ∞ f ( t ) e − s t d t = f(t)e^{-st}\mid _0^\infty + s\int_0^{\infty}f(t)e^{-st}dt =f(t)e−st∣0∞+s∫0∞f(t)e−stdt = L [ f ( t ) ] − f ( 0 ) = L[f(t)] - f(0) =L[f(t)]−f(0) - 性质3:像函数的微分性质
L ′ [ f ( t ) ] = d d s ∫ 0 ∞ f ( t ) e − s t d t L'[f(t)] = \frac{d}{ds}\int_0^{\infty}f(t)e^{-st}dt L′[f(t)]=dsd∫0∞f(t)e−stdt = ∫ 0 ∞ − t f ( t ) e − s t d t = \int_0^{\infty}-tf(t)e^{-st}dt =∫0∞−tf(t)e−stdt = L [ − t f ( t ) ] =L[-tf(t)] =L[−tf(t)] - 性质4:位移性质
已 知 L [ s ] = L [ e a t f ( t ) ] , 已知L[s] = L[e^{at}f(t)], 已知L[s]=L[eatf(t)], 求 L [ e a t f ( t ) ] = ∫ 0 ∞ f ( t ) e a t e − s t d t 求L[e^{at}f(t)] = \int_0^{\infty}f(t)e^{at}e^{-st}dt 求L[eatf(t)]=∫0∞f(t)eate−stdt = ∫ 0 ∞ f ( t ) e − ( s − a ) t d t = \int_0^{\infty}f(t)e^{-(s-a)t}dt =∫0∞f(t)e−(s−a)tdt = L [ s − a ] = L[s-a] =L[s−a]
\qquad 利用以上的性质对常微分方程进行拉氏变换,求出y的拉氏变换Y[s],进行相应的拆分,再拉氏逆变换即可得到高阶常微分方程的特解。
3.4 可降阶的高阶常微分方程
对于某些可降阶的常微分方程,我们使用变量代换法进行求解。
能够进行降阶的高阶常微分方程组形会比较简单,仅举例子就不赘述了。
- 形如 y ( n ) = f ( x ) y^{(n)}= f(x) y(n)=f(x)等式两端直接多次积分。
- 形如 F ( x , y ( k ) , y ( k + 1 ) , ⋯ , y ( n ) ) = 0 ( 1 ≤ k ≤ n ) F(x,y^{(k)},y^{(k+1)},\cdots,y^{(n)}) = 0(1\leq k\leq n) F(x,y(k),y(k+1),⋯,y(n))=0(1≤k≤n),令 q = y ( k ) q = y^{(k)} q=y(k),降阶为 y ( n − k ) y^{(n-k)} y(n−k)
- 形如
F
(
y
,
y
′
,
y
′
′
,
⋯
,
y
(
n
)
)
=
0
F(y,y',y'',\cdots,y^{(n)}) = 0
F(y,y′,y′′,⋯,y(n))=0;
等式不显含x,令 d y d x = p \frac {dy}{dx} =p dxdy=p;同理可以求出 d 2 y d x 2 = p d p d y , d 3 y d x 3 = p 2 d 2 p d y 2 + p ( d p d y ) 2 , ⋯ ⋯ \frac {d^2y}{dx^2} =p\frac {dp}{dy},\frac {d^3y}{dx^3} =p^2\frac {d^2p}{dy^2} + p(\frac {dp}{dy})^2,\cdots \cdots dx2d2y=pdydp,dx3d3y=p2dy2d2p+p(dydp)2,⋯⋯ - 形如 F ( x , y ′ , y ′ ′ , ⋯ , y ( n ) ) = d d x Φ ( x , y ′ , y ′ ′ , ⋯ , y ( n − 1 ) ) = 0 F(x,y',y'',\cdots,y^{(n)}) = \frac d{dx}\Phi (x,y',y'',\cdots,y^{(n-1)}) = 0 F(x,y′,y′′,⋯,y(n))=dxdΦ(x,y′,y′′,⋯,y(n−1))=0,等式左边为右边的导数,利用右边积分进行降阶。
值得注意的是,在求解一阶常微分方程组的时候我们会发现,高阶常微分方程实际上可以转换成一阶常微分方程组。