Gram-Schmidt正交化方法(过目不忘)

一、定理

如果 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn是n维Euclid空间V的一个基(基肯定是线性无关的),若令
β 1 = α 1 \beta_1 = \alpha_1 β1=α1 β 2 = α 2 − < α 2 ⋅ β 1 > < β 1 ⋅ β 1 > β 1 \beta_2 = \alpha_2 - \frac{<\alpha_2·\beta_1>}{<\beta_1·\beta_1>}\beta_1 β2=α2<β1β1><α2β1>β1 ⋮ \vdots β n = α 2 − < α 2 ⋅ β 1 > < β 1 ⋅ β 1 > β 1 − , ⋯ − < α n ⋅ β n − 1 > < β n − 1 ⋅ β n − 1 > β n − 1 , \beta_n = \alpha_2 - \frac{<\alpha_2·\beta_1>}{<\beta_1·\beta_1>}\beta_1 - ,\dots - \frac{<\alpha_n·\beta_{n-1}>}{<\beta_{n-1}·\beta_{n-1}>}\beta_{n-1}, βn=α2<β1β1><α2β1>β1,<βn1βn1><αnβn1>βn1,
β 1 , … , β n \beta_1,\dots,\beta_n β1,,βn就是V的一个正交基.若再令
e i = β i ∣ ∣ β i ∣ ∣ , i = 1 , 2 , … , n , e_i = \frac{\beta_i}{||\beta_i||},\quad i = 1,2,\dots,n, ei=∣∣βi∣∣βi,i=1,2,,n,就得到了V的标准正交基 e 1 , e 2 , … , e n e_1,e_2,\dots,e_n e1,e2,,en.


\quad 虽然上面的公式已经十分有规律了,时间长了还难免会把小角标记错。书上也有推导的原理(非常简单),但是数学公式还是太抽象了;那我们可以想一下3维Euclid空间中该公式的意义,然后再将其推广更高纬度的空间中去。

二、几何意义

\quad 简单推导一下。

1、两向量垂直

如果 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3是3维Euclid空间 V V V的一个基, β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3是待求的正交基,设
β 1 = α 1 , \beta_1 = \alpha_1, β1=α1, β 2 = α 2 − k β 1 , 由于正交求得 k = < α 2 ⋅ β 1 > < β 1 ⋅ β 1 > . \beta_2 = \alpha_2 - k\beta_1,由于正交求得k = \frac{<\alpha_2·\beta_1>}{<\beta_1·\beta_1>}. β2=α2kβ1,由于正交求得k=<β1β1><α2β1>.

我们考虑一下 β 2 \beta_2 β2是怎么得到的:在 α 2 \alpha_2 α2的基础上减了 k β 1 k\beta_1 kβ1,这个值是 α 2 \alpha_2 α2 α 1 \alpha_1 α1上的投影长度。这个操作之后确实就垂直了,如下图所示:
在这里插入图片描述

2、定义垂直操作

我们定义下面操作
β i = α i − < α i ⋅ β j > < β j ⋅ β j > β j \beta_i = \alpha_i -\frac{<\alpha_i·\beta_j>}{<\beta_j·\beta_j>}\beta_j βi=αi<βjβj><αiβj>βj
α i \alpha_i αi关于 β j \beta_j βj的垂直变换。

3、 α 2 \alpha_2 α2 α 3 \alpha_3 α3同时关于 β 1 \beta_1 β1垂直变换

α 2 \alpha2 α2关于 β 1 \beta_1 β1垂直变换得到 β 2 \beta_2 β2后,我们对 α 3 \alpha_3 α3也进行关于 β 1 \beta_1 β1垂直变换得到 β 3 ′ \beta_3' β3,有
β 3 ′ = α 3 − < α 3 ⋅ β 1 > < β 1 ⋅ β 1 > β 1 \beta_3' = \alpha_3 -\frac{<\alpha_3·\beta_1>}{<\beta_1·\beta_1>}\beta_1 β3=α3<β1β1><α3β1>β1
此时假设空间直角坐标系的x,z轴与 β 1 、 β 2 \beta_1、\beta_2 β1β2重合; β 3 ′ \beta_3' β3在平面 x O y xOy xOy,垂直 β 1 \beta_1 β1,不垂直 β 2 \beta_2 β2。那么在三维空间中绘制出来的效果如下:
在这里插入图片描述

4、 β 3 ′ \beta_3' β3关于 β 2 \beta_2 β2进行垂直变换

明显我们离完成正交基的求解只有一步了:只需将 β 3 ′ \beta_3' β3垂直变换后得到 β 3 \beta_3 β3使其垂直 β 2 \beta_2 β2
β 3 = β 3 ′ − < β 3 ′ ⋅ β 2 > < β 2 ⋅ β 2 > β 2 , \beta_3 = \beta_3' - \frac{<\beta_3'·\beta_2>}{<\beta_2·\beta_2>}\beta_2, β3=β3<β2β2><β3β2>β2, 由于 < β 3 ′ ⋅ β 2 > = < ( α 3 − < α 3 ⋅ β 1 > < β 1 ⋅ β 1 > β 1 ) ⋅ β 2 > = < α 3 ⋅ β 2 > , 由于<\beta_3'·\beta_2> = <(\alpha_3 -\frac{<\alpha_3·\beta_1>}{<\beta_1·\beta_1>}\beta_1)·\beta_2> = <\alpha_3·\beta_2>, 由于<β3β2>=<(α3<β1β1><α3β1>β1)β2>=<α3β2>, β 3 = α 3 − < α 3 ⋅ β 1 > < β 1 ⋅ β 1 > β 1 − < α 3 ⋅ β 2 > < β 2 ⋅ β 2 > β 2 \beta_3= \alpha_3 - \frac{<\alpha_3·\beta_1>}{<\beta_1·\beta_1>}\beta_1 - \frac{<\alpha_3·\beta_2>}{<\beta_2·\beta_2>}\beta_2 β3=α3<β1β1><α3β1>β1<β2β2><α3β2>β2 \quad 至此我们已经得到了三维空间中的正交基 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3了,观察 β 3 的结构 \beta_3的结构 β3的结构每一项都相当于一次关于已知的正交基的垂直转动。想像空间中三个起点连接的向量,在空间中随机分布,我们要用手把它们掰成相互垂直关系。

\quad 使用相同的方式我们就能够得到n维空间中的正交向基了,单位化之后得到标准正交基。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值