1548:【例 2】A Simple Problem with Integers
时间限制: 5000 ms 内存限制: 524288 KB
提交数: 2062 通过数: 495
【题目描述】
这是一道模板题。
给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类:
1、lrx:给定 l,r,x,对于所有 i∈[l,r],将 a[i] 加上 x(换言之,将 a[l],a[l+1],…,a[r] 分别加上 x);
2、lr:给定 l,r,求 ∑ri=la[i] 的值(换言之,求 a[l]+a[l+1]+⋯+a[r] 的值)。
【输入】
第一行包含 2 个正整数 n,q,表示数列长度和询问个数。保证 1≤n,q≤106 。
第二行 n 个整数 a[1],a[2],…,a[n],表示初始数列。保证 ∣∣a[i]∣≤106 。
接下来 q 行,每行一个操作,为以下两种之一:
1、lrx:对于所有 i∈[l,r],将 a[i] 加上 x;
2、lr:输出 ∑ri=la[i] 的值。
保证 1≤l≤r≤n,∣x∣≤106 。
【输出】
对于每个 2lr 操作,输出一行,每行有一个整数,表示所求的结果。
【输入样例】
5 10
2 6 6 1 1
2 1 4
1 2 5 10
2 1 3
2 2 3
1 2 2 8
1 2 3 7
1 4 4 10
2 1 2
1 4 5 6
2 3 4
【输出样例】
15
34
32
33
50
【提示】
数据范围与提示:
对于所有数据,1≤n,q≤106,∣a[i]∣≤106,1≤l≤r≤n,∣x∣≤106 。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+5;
int n,m,a[N],k,l,r,x;
struct node
{
int l,r;
ll s,lazy;
void update(ll k)
{
s+=(r-l+1)*k;
lazy+=k;
}
}tree[4*N];
void push_down(int id)
{
if(tree[id].lazy)
{
tree[id*2].update(tree[id].lazy);
tree[id*2+1].update(tree[id].lazy);
tree[id].lazy=0;
}
}
void push_up(int id)
{
tree[id].s=tree[id*2].s+tree[id*2+1].s;
}
void build(int id,int l,int r)
{
tree[id].l=l;
tree[id].r=r;
if(l==r)
{
tree[id].s=a[l];
return;
}
int mid=(l+r)/2;
build(id*2,l,mid);
build(id*2+1,mid+1,r);
push_up(id);
}
void update(int id,int l,int r,int k)
{
int L=tree[id].l,R=tree[id].r;
if(R<l||L>r)
return;
if(l<=L&&R<=r)
{
tree[id].update(k);
return;
}
push_down(id);
if(tree[id*2].r>=l)
update(id*2,l,r,k);
if(tree[id*2+1].l<=r)
update(id*2+1,l,r,k);
push_up(id);
}
ll query(int id,int l,int r)
{
int L=tree[id].l,R=tree[id].r;
ll res=0;
if(R<l||L>r)
return 0;
if(l<=L&&R<=r)
return tree[id].s;
push_down(id);
if(tree[id*2].r>=l)
res+=query(id*2,l,r);
if(tree[id*2+1].l<=r)
res+=query(id*2+1,l,r);
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
build(1,1,n);
while(m--)
{
scanf("%d",&k);
if(k==1)
{
scanf("%d%d%d",&l,&r,&x);
update(1,l,r,x);
}
else
{
scanf("%d%d",&l,&r);
printf("%lld\n",query(1,l,r));
}
}
return 0;
}