hdu 1878 欧拉回路 (并查集)无向图模板

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#define ll long long

using namespace std;
int fa[1005],n,m,b[1005];

int Find(int x)
{
    if(fa[x]!=x)
        fa[x]=Find(fa[x]);
    return fa[x];
}
void Union(int x,int y)
{
    int a=Find(x),b=Find(y);
    fa[a]=b;
}

int main()
{
    int u,v;
    while(cin >> n,n)
    {
        memset(b,0,sizeof(b));
        for(int i=1;i<=n;i++)
            fa[i]=i;
        cin >> m;
        while(m--)
        {
            cin >> u >> v;
            b[u]++;
            b[v]++;
            Union(u,v);
        }
        int res1=0,res2=0;
        for(int i=1;i<=n;i++)
        {
            if(fa[i]==i)
               res1++;
            if(b[i]%2)
                res2++;
        }
        if(res1==1&&res2==0)
            cout << 1 << endl;
        else
            cout << 0 << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值