欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#define ll long long
using namespace std;
int fa[1005],n,m,b[1005];
int Find(int x)
{
if(fa[x]!=x)
fa[x]=Find(fa[x]);
return fa[x];
}
void Union(int x,int y)
{
int a=Find(x),b=Find(y);
fa[a]=b;
}
int main()
{
int u,v;
while(cin >> n,n)
{
memset(b,0,sizeof(b));
for(int i=1;i<=n;i++)
fa[i]=i;
cin >> m;
while(m--)
{
cin >> u >> v;
b[u]++;
b[v]++;
Union(u,v);
}
int res1=0,res2=0;
for(int i=1;i<=n;i++)
{
if(fa[i]==i)
res1++;
if(b[i]%2)
res2++;
}
if(res1==1&&res2==0)
cout << 1 << endl;
else
cout << 0 << endl;
}
return 0;
}