leetcode142 环形链表解析和追及证明

本文介绍了如何通过快慢指针判断链表中是否存在环,并详细解释了如何找到环的入口节点。利用快慢指针相遇原理,当快指针速度是慢指针两倍时,若存在环,两者必然会在环内相遇。之后通过双指针从相遇点和头节点同时遍历,当两者再次相遇即为环的入口。这种方法适用于解决链表环形结构的问题。
摘要由CSDN通过智能技术生成

题目链接:leetcode 142 环形链表2
在这里插入图片描述
看这个问题之前首先了解第141题环形链表:

bool hasCycle(struct ListNode *head) {
    struct ListNode *fast,*slow;
    slow=head;
    fast=head;
    while(fast &&fast->next)
    {
        fast=fast->next->next;
        slow=slow->next;
        if(fast== slow)
        {
            return true;
        }
    }
        return false;
}

这里解题的思想在于,如果该链表成环,那么快慢指针就一定能在环内相遇,但是为什么呢?

在这里插入图片描述
假设在slow进入环时,fast与slow相距N个next距离,每次slow前进一个next,fast每次前进2个next,那么每次循环就能使slow和fast之间的距离-1,当距离为0时即可相遇

在这里插入图片描述
,但是当fast每次前进超过2个next,那么就无法保证slow会与fast相遇。
假设fast每次前进3个next,slow每次前进1个next,每次两者之间的距离缩小2个next,如果N为偶数,可保证两者的相遇,但是N如果是奇数,则fast会越过slow重新开始追逐:
在这里插入图片描述
如果c-1是奇数,那么两个则永远不会相遇了。

如果知道该链表成环,那如何找到入环点呢?

在这里插入图片描述
假设slow与fast在meet点相遇,与入环点相距x,起点与入环相距L,环周长为c,rest=c-x 。
因为fast的速度是slow的两倍,所以slow必在走完环一周前遇上fast,所以
slow走过的距离——L+x
我们无法预知L和c的大小关系,假设fast已绕了n圈环,于是
fast走过的距离——L+n*c+x(n>=1)
故有等式:
2(L+x)=L+n*c+x
进一步化简:
=> L=n*c-x
=> L=(n-1)*c+c-x
=> L=(n-1)*c+rest(关键!!)
假设A结点从head开始,B结点从meet结点开始,两者同时出发。那么在A走完L时,B就会绕完(n-1)圈后再走rest到达入环点,那么就证明了A==B时,两者就正好是入环点了。
将B走过的路径打开便于理解,
在这里插入图片描述
两者在入环点前不会相等,相等时正好到达入环点。
代码:

struct ListNode *detectCycle(struct ListNode *head) {
    struct ListNode*slow,*fast,*meet=NULL;
    slow=fast=head;
    //确定是否有环
    while(fast && fast->next)
    {
        slow=slow->next;
        fast=fast->next->next;
        if(slow==fast)
        {
            meet=slow;
            break;
        }
    }
    if(meet==NULL)
    {
        return NULL;
    }
    else
    {
        while(head!=meet)
        {
            head=head->next;
            meet=meet->next;
        }
        return head;
    } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值