题目链接:leetcode 142 环形链表2
看这个问题之前首先了解第141题环形链表:
bool hasCycle(struct ListNode *head) {
struct ListNode *fast,*slow;
slow=head;
fast=head;
while(fast &&fast->next)
{
fast=fast->next->next;
slow=slow->next;
if(fast== slow)
{
return true;
}
}
return false;
}
这里解题的思想在于,如果该链表成环,那么快慢指针就一定能在环内相遇,但是为什么呢?
假设在slow进入环时,fast与slow相距N个next
距离,每次slow前进一个next
,fast每次前进2个next
,那么每次循环就能使slow和fast之间的距离-1
,当距离为0时即可相遇
,但是当fast每次前进超过2个next,那么就无法保证slow会与fast相遇。
假设fast每次前进3个next
,slow每次前进1个next
,每次两者之间的距离缩小2个next
,如果N为偶数,可保证两者的相遇,但是N如果是奇数,则fast会越过slow重新开始追逐:
如果c-1是奇数,那么两个则永远不会相遇了。
如果知道该链表成环,那如何找到入环点呢?
假设slow与fast在meet点相遇,与入环点相距x,起点与入环相距L,环周长为c,rest=c-x 。
因为fast的速度是slow的两倍,所以slow必在走完环一周前遇上fast,所以
slow走过的距离——L+x
我们无法预知L和c的大小关系,假设fast已绕了n圈环,于是
fast走过的距离——L+n*c+x
(n>=1)
故有等式:
2(L+x)=L+n*c+x
进一步化简:
=> L=n*c-x
=> L=(n-1)*c+c-x
=> L=(n-1)*c+rest
(关键!!)
假设A结点从head开始,B结点从meet结点开始,两者同时出发。那么在A走完L时,B就会绕完(n-1)圈后再走rest到达入环点
,那么就证明了A==B时,两者就正好是入环点了。
将B走过的路径打开便于理解,
两者在入环点前不会相等,相等时正好到达入环点。
代码:
struct ListNode *detectCycle(struct ListNode *head) {
struct ListNode*slow,*fast,*meet=NULL;
slow=fast=head;
//确定是否有环
while(fast && fast->next)
{
slow=slow->next;
fast=fast->next->next;
if(slow==fast)
{
meet=slow;
break;
}
}
if(meet==NULL)
{
return NULL;
}
else
{
while(head!=meet)
{
head=head->next;
meet=meet->next;
}
return head;
}
}