一看就懂的卡尔曼滤波五个公式

本文深入浅出地介绍了卡尔曼滤波的基本概念和五个核心公式,包括运动方程、测量方程、误差处理以及权重计算。通过数学推导展示了如何利用卡尔曼滤波优化估计值,同时提供了简单的跟踪图示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一看就懂的卡尔曼滤波五个公式

任何物体的运动都有一个运动方程:
x k ^ = A x k − 1 + u + w , w ∈ ( 0 , Q ) (1) \hat{x_k} =Ax_{k-1}+u+w ,w\in (0,Q) \tag{1} xk^=Axk1+u+w,w(0,Q)(1)式中,k为某一个时刻,u为输入量,x为k-1时刻系统真实状态,w为方差Q的高斯误差, x k ^ \hat{x_k} xk^为k时刻估计状态。
至此,根据这个系统状态我们有一个测量方程:
z k ^ = H x k ^ (2) \hat{z_k} =H\hat{x_k}\tag{2} zk^=Hxk^(2)式(2)被人称为先验。
这两个方程由于实际上 很多情况达不到标准导致了会有误差,然后方程变为:
z k = H x k ^ + v , v ∈ ( 0 , R ) (3) \\z_k=H\hat{x_k}+v,v\in (0,R)\tag{3} zk=Hxk^+v,v(0,R)(3)式中,v为方差R的高斯误差。
一般来说,式(3)中的 z k z_k zk是通过传感器测量出来的(测量值),式(2)中的 z k ^ \hat{z_k} zk^是我们通过运动方程转化过来的(理论值)。针对这两个值我们到底应该相信谁呢?当然是谁的表现好谁的权重大,从而可以建立一个方程:
H X n e w = ( 1 − K ) H x k ^ + K z k = H x k ^ + K ( z k − H x k ^ ) (5) HX_{new}=(1-K)H\hat{x_k}+Kz_k=H\hat{x_k}+K(z_k-H\hat{x_k})\tag{5} HXnew=(1K)Hxk^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值