CF1228C Primes and Multiplication(数论)

Primes and Multiplication

题意:不好描述(逃)戳上面链接吧
分析:
题目看起来很复杂,但是理一下其实就是 x的每个质因数在1到n的的质因数集合中出现次数 答案就是x的每个质因数的次数幂(好像很绕,我也不知道在讲什么)

举个例子,x=5,n=70,x的质因数只有5, f ( 5 , 1 ) ∗ f ( 5 , 2 ) … f ( 5 , 70 ) = g ( 1 , 5 ) ∗ g ( 2 , 5 ) … g ( 70 , 5 ) f(5,1)*f(5,2)\dots f(5,70) = g(1,5)*g(2,5)\dots g(70,5) f(5,1)f(5,2)f(5,70)=g(1,5)g(2,5)g(70,5)
去求这个结果

g(1,5),g(2,5)…g(4,5)…g(69,5) 这些不能整除5结果都为1
g(5,5),g(10,5),g(15,5)…都等于5
g(25,5),g(50,5)等于25

等于1的不管,对结果没有影响,重点就是求有多少个值等于5,多少个值等于25
用70/5=14可以得到能整除5的个数,但是这里面还包含了等于25的值,所以就不能再用70/25,而是用70/5=14再去除5,就能求出能整除两个5的个数
用次数去更新答案,也就是这一步:

for (int i = 0; i < prime.size(); i++) {
        ll k = 0, tmp = n;
        while (tmp) {
            tmp /= prime[i];
            k += tmp;//加上能整除当前质因数的个数
        }
        ans = (ans * quick_pow(prime[i], k)) % mod;
    }

Code:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a));
#define lowbit(x) (x & -x)
#define lrt nl, mid, rt << 1
#define rrt mid + 1, nr, rt << 1 | 1
template <typename T>
inline void read(T& t) {
    t = 0;
    int f = 1;
    char ch = getchar();
    while (!isdigit(ch)) {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (isdigit(ch)) {
        t = t * 10 + ch - '0';
        ch = getchar();
    }
    t *= f;
}
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
const ll Inf = 0x7f7f7f7f7f7f7f7f;
const int inf = 0x7f7f7f7f;
const double eps = 1e-5;
const double Pi = acos(-1);
const int mod = 1e9 + 7;

vector<int> prime;

ll quick_pow(ll n, ll k) {
    ll ret = 1, base = n;
    while (k) {
        if (k & 1)
            (ret *= base) %= mod;
        (base *= base) %= mod;
        k >>= 1;
    }
    return ret;
}

int main(void) {
    ll x, n;
    read(x), read(n);
    for (ll i = 2; i * i <= x; i++) {
        if (x % i == 0) {
            prime.push_back(i);
            while (x % i == 0)
                x /= i;
        }
    }
    if (x > 1)
        prime.push_back(x);
    ll ans = 1;
    for (int i = 0; i < prime.size(); i++) {
        ll k = 0, tmp = n;
        while (tmp) {
            tmp /= prime[i];
            k += tmp;
        }
        ans = (ans * quick_pow(prime[i], k)) % mod;
    }
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值