CodeForces - 1228C Primes and Multiplication(题意转化+快速幂)

题目链接https://vjudge.net/contest/373416#problem/I
在这里插入图片描述
Input

10 2

Output

2

Input

20190929 1605

Output

363165664

Input

947 987654321987654321

Output

593574252

翻译
给定x和n,计算f(x,1) ∗ * f(x,2) ∗ * …f(x,n)
f(x,y)=g(y, x 1 x_1 x1) ∗ * g(y, x 2 x_2 x2) ∗ * …g(y, x n x_n xn)( x 1 x_1 x1, x 2 x_2 x2 x n x_n xn为x的素因子

g(x,p)=max(pk1,pk2,pk3,pkn)(x能被pk整除

例如
x=10,n=2
f(10,1) ∗ * f(10,2)=g(1,2) ∗ * g(1,5) ∗ * g(2,2) ∗ * g(2,5)

分析

f(x,1) ∗ * f(x,2) ∗ * …f(x,n)=
g(1, x 1 x_1 x1) ∗ * g(2, x 1 x_1 x1) ∗ * g(3, x 1 x_1 x1) ∗ * …g(n, x 1 x_1 x1) ∗ *
g(1, x 2 x_2 x2) ∗ * g(2, x 2 x_2 x2) ∗ * g(3, x 2 x_2 x2) ∗ * …g(n, x 2 x_2 x2) ∗ *

g(1, x n x_n xn) ∗ * g(2, x n x_n xn) ∗ * g(3, x n x_n xn) ∗ * …g(n, x n x_n xn)

1~n个数中,能够整除 x 1 x_1 x1的数字一共有n/ x 1 x_1 x1
整除 x 1 2 x_1^2 x12的数字一共有n/ x 1 2 x_1^2 x12
以此类推。。。。

可以得出在这个n个数中,有n/ x 1 x_1 x1项贡献 x 1 x_1 x1;
有n/ x 2 2 x_2^2 x22项贡献 x 2 2 x_2^2 x22
以此类推。。。。。

考虑:
能够整除 x 1 2 x_1^2 x12的数字必定能够整除 x 1 x_1 x1,即整除 x k x^k xk的数字必定能够整除 x t x^t xt(0<t<k)
需要去重:
n/ x 1 x_1 x1项贡献的 x 1 x_1 x1全部乘上:quick_mi( x 1 x_1 x1,n/ x 1 x_1 x1)(快速幂)
计算n/ x 1 2 x_1^2 x12的贡献时,只需要乘以quick_mi( x 1 x_1 x1,n/ x 1 2 x_1^2 x12)

例如
2 4 6 8 10 ( x 1 x_1 x1=2)
第一次乘以 2 5 2^5 25
第二次:4和8能整除 x 2 2 x_2^2 x22,第一次,4和8已经对答案贡献了2,只需要乘以 2 2 2^2 22即可。

完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int mod=1e9+7;
const int N=1e6+10;
LL x,n,prime[N];
int tot;
void solve(LL x)///求x的所有素因子
{
    for(int i=2; i*i<=x; i++)
    {
        if(x%i==0)
        {
            prime[tot++]=i;
            while(x%i==0)
                x/=i;
        }
    }
    if(x>1)
        prime[tot++]=x;

}
LL quick_mi(LL a,LL b)
{
    LL res=1;
    while(b)
    {
        if(b&1)
            res=(res*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return res;
}
LL g(LL n,LL m)
{
    LL t=0;
    for(LL i=m; i<=n; i)
    {
        t+=(n/i);
        n/=i;///1~n中能整除prime[i],prime[i]^2,,,prime[i]^n项的和
    }
    return quick_mi(m,t);
}
int main()
{
    scanf("%lld%lld",&x,&n);
    solve(x);
    LL res=1;
    for(int i=0; i<tot; i++)
    {
        LL sum;
        sum=g(n,prime[i]);
        res=(res*sum)%mod;
    }
    printf("%lld\n",res);
    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权。最终,ans\[u\]代表包含节点u在内的子连通块的最大权。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zaiyang遇见

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值