Acwing 高斯消元

高斯消元能在 O ( n 3 ) O(n^3) O(n3)的时间复杂度内求解n个方程,n个未知数的多元线性方程组,即
a 11 x 1 + a 12 x 2 + a 13 x 3 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + ⋯ + a n n x n = b n a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3}+\dots +a_{1n}x_{n} = b_{1}\\a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3}+\dots +a_{2n}x_{n} = b_{2}\\ \dots \\ a_{n1}x_{1}+a_{n2}x_{2}+a_{n3}x_{3}+\dots +a_{nn}x_{n} = b_{n} a11x1+a12x2+a13x3++a1nxn=b1a21x1+a22x2+a23x3++a2nxn=b2an1x1+an2x2+an3x3++annxn=bn
对增广矩阵做初等行变换,变成一个行最简阶梯型矩阵(线性代数)

  • 对某一行(列)乘以一个非零的数;
  • 交换两行(列);
  • 将一行(列)的若干倍加到另一行(列)

解的情况有三种

  • 无解,系数矩阵的秩不等于增广矩阵的秩
  • 有无穷多解,系数矩阵的秩等于增广矩阵的秩,且小于n
  • 有唯一解,系数矩阵的秩等于增广矩阵的秩,且等于n

高斯消元法步骤:
从列开始,循环枚举处理每一列

  • 找到该列绝对值最大的一行,如果最大的绝对值为0,说明当前列已经化简好了,此重循环跳出进行下一列处理;
  • 将这一行换到最上面;
  • 将该行第一个数变为1;
  • 用当前行将下面所有行的当前列消成0;
  • 固定该行,处理下一行,处理的行数r++

AcWing883. 高斯消元解线性方程组

在这里插入图片描述
注意:

  • 本题采用fabs即浮点绝对值来取绝对值,在判断是否为0时,应为小于一个足够小的数即为0;
  • 用每一行的最后一列存储解的值。

具体实现代码(详解版):

#include <iostream>
#include <algorithm>
#include <cmath> // fabs

using namespace std;

const int N = 110;
const double eps = 1e-6; // 绝对值小于 eps 即为 0

int n;
double a[N][N]; // 存储增广矩阵

// 高斯消元法解线性方程组
int gauss() {
    int c, r; // c 代表当前处理列,r 代表当前处理行

    for (c = 0, r = 0; c < n; c++) { // 按列处理
        int t = r; // 先找到当前这一列绝对值最大的数字所在的行号

        // 找到当前列绝对值最大的元素
        for (int i = r; i < n; i++) {
            if (fabs(a[i][c]) > fabs(a[t][c])) t = i;
        }

        // 判断当前列最大绝对值是否接近 0,若是则跳过该列
        if (fabs(a[t][c]) < eps) continue;

        // 将当前行与第 r 行交换
        for (int i = c; i <= n; i++) swap(a[t][i], a[r][i]);

        // 将第 r 行的第 c 列元素归一化
        for (int i = n; i >= c; i--) a[r][i] /= a[r][c];

        // 将第 r 行下方的所有行的第 c 列消为 0
        for (int i = r + 1; i < n; i++) {
            if (fabs(a[i][c]) > eps) {
                double factor = a[i][c];
                for (int j = n; j >= c; j--) a[i][j] -= a[r][j] * factor;
            }
        }

        r++; // 处理下一行
    }

    // 检查是否有无穷多解或无解
    for (int i = r; i < n; i++) {
        if (fabs(a[i][n]) > eps) return 2; // 无解
    }
    if (r < n) return 1; // 无穷解

    // 回代求解
    for (int i = n - 1; i >= 0; i--) {
        for (int j = i + 1; j < n; j++) {
            a[i][n] -= a[i][j] * a[j][n];
        }
    }

    return 0; // 有唯一解
}

int main() {
    cin >> n;
    // 读取增广矩阵
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= n; j++) {
            cin >> a[i][j];
        }
    }

    // 调用高斯消元法并输出结果
    int result = gauss();
    if (result == 0) {
        // 有唯一解
        for (int i = 0; i < n; i++) printf("%.2lf\n", a[i][n]);
    } else if (result == 1) {
        puts("Infinite group solutions"); // 无穷解
    } else {
        puts("No solution"); // 无解
    }

    return 0;
}

AcWing884. 高斯消元解异或线性方程组
在这里插入图片描述
实现思路:基本思路和上题求解一般的线性方程组一致,只是区别在与本题未知量之间是异或运算,更适合电脑的运算

具体实现代码(详解版):

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;  // 最大矩阵规模
int a[N][N];        // 存储增广矩阵
int n;              // 方程组中未知数的数量

// 高斯消元法求解异或线性方程组
int gauss() {
    int r, c;  // r 代表当前处理的行,c 代表当前处理的列
    for (r = c = 0; c < n; c++) {  // 枚举每一列
        // 找到第 r 行及其后的非零行
        int t = r;
        for (int i = r; i < n; i++) {
            if (a[i][c]) {  // 找到第一个在当前列中非零的行
                t = i;
                break;
            }
        }

        // 如果当前列中没有非零元素,则跳过这一列
        if (!a[t][c]) continue;

        // 将找到的第 t 行与第 r 行交换,确保当前处理的行是非零行
        for (int i = 0; i <= n; i++) swap(a[r][i], a[t][i]);

        // 用第 r 行消去下面的所有行,使得这一列下面的所有元素为 0
        for (int i = r + 1; i < n; i++) {
            if (a[i][c]) {  // 如果第 i 行的第 c 列非零
                for (int j = c; j <= n; j++) {
                    a[i][j] ^= a[r][j];  // 用第 r 行异或消去第 i 行的第 c 列
                }
            }
        }
        r++;  // 处理下一行
    }

    // 判断解的情况
    // 如果有行中全为 0 且增广列(即最后一列)非零,则无解
    for (int i = r; i < n; i++) {
        if (a[i][n]) return 2;  // 无解
    }
    
    // 如果有多行全为 0 且增广列也为 0,则存在无穷多解
    if (r < n) return 1;  // 无穷多解

    // 否则,进行回代求出唯一解
    for (int i = n - 1; i >= 0; i--) {
        for (int j = i + 1; j < n; j++) {
            a[i][n] ^= (a[i][j] & a[j][n]);  // 通过已确定的解逐步回代
        }
    }
    return 0;  // 唯一解
}

int main() {
    cin >> n;  // 输入未知数的数量

    // 输入增广矩阵,包含 n 行 n+1 列
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= n; j++) {
            cin >> a[i][j];
        }
    }

    // 调用高斯消元法,判断解的情况
    int res = gauss();
    if (res == 0) {  // 唯一解
        for (int i = 0; i < n; i++) {
            cout << a[i][n] << endl;  // 输出每个未知数的解
        }
    } else if (res == 1) {
        puts("Multiple sets of solutions");  // 无穷多解
    } else {
        puts("No solution");  // 无解
    }

    return 0;
}

以上就是高斯消元法的一些知识,用的不多~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值