Numpy数组索引、切片与值的替换
1、索引与切片:
1.1 获取某行的数据::
示例代码如下:
# 1. 如果是一维数组
a1 = np.arange(0, 29)
print(a1[1]) # 获取下标为1的元素
#结果为:1
a1 = np.arange(0, 24).reshape((4, 6))
print(a1[1]) # 获取下标为1的行的数据
#[ 6 7 8 9 10 11]
注意:以上例子是相乘,其实相加、相减、相除也都是类似的。
1.2 连续获取某几行的数据:
# 1. 获取连续的几行的数据
a1 = np.arange(0,24).reshape((4,6))
print(a1)
# [[ 0 1 2 3 4 5]
# [ 6 7 8 9 10 11]
# [12 13 14 15 16 17]
# [18 19 20 21 22 23]]
print(a1[0:2]) #获取0行到1行的数据
# [[ 0 1 2 3 4 5]
# [ 6 7 8 9 10 11]]
# 2. 获取不连续的几行的数据
print(a1[[0,2,3]])
# [[ 0 1 2 3 4 5]
# [12 13 14 15 16 17]
# [18 19 20 21 22 23]]
# 3. 也可以使用负数进行索引
print(a1[[-1,-2]])
# [[18 19 20 21 22 23]
# [12 13 14 15 16 17]]
1.3 获取某行某列的数据:
#获取某行某列的数据:
a1 = np.arange(0,24).reshape((4,6))
print(a1)
# [[ 0 1 2 3 4 5]
# [ 6 7 8 9 10 11]
# [12 13 14 15 16 17]
# [18 19 20 21 22 23]]
print(a1[1,1]) #获取1行1列的数据
#结果为:7
print(a1[0:2,0:2]) #获取0-1行的0-1列的数据
# [[0 1]
# [6 7]]
print(a1[[1,2],[2,3]]) #获取(1,2)和(2,3)的两个数据,这也叫花式索引
# [ 8 15]
1.4 获取某列的数据:
#获取某列的数据
a1 = np.arange(0,24).reshape((4,6))
print(a1[:,1]) #获取第1列的数据
#结果为:[ 1 7 13 19]
2、布尔索引:如:a2 = a1 < 10
2.1 布尔运算也是矢量的,比如以下代码:
#布尔索引
a1 = np.arange(0,24).reshape((4,6))
print(a1<10) #会返回一个新的数组,这个数组中的值全部都是bool类型
# [[ True True True True True True]
# [ True True True True False False]
# [False False False False False False]
# [False False False False False False]]
2.2 这样看上去没有什么用,假如我现在要实现一个需求,要将a1数组中所有小于10的数据全部都提取出来。那么可以使用以下方式实现:
a1 = np.arange(0,24).reshape((4,6))
a2 = a1 < 10
print(a1[a2]) #这样就会在a1中把a2中为True的元素对应的位置的值提取出来
#结果为:[0 1 2 3 4 5 6 7 8 9]
2.3 其中布尔运算可以有!=、==、>、<、>=、<=以及&(与)和|(或)。示例代码如下:
a1 = np.arange(0,24).reshape((4,6))
a2 = a1[(a1 < 5) | (a1 > 10)] #这样就会在a1中把a1<5且a1>10的值取出来
print(a2) #[ 0 1 2 3 4 11 12 13 14 15 16 17 18 19 20 21 22 23]
3、值的替换:
3.1 利用索引,也可以做一些值的替换。把满足条件的位置的值替换成其他的值。
比如以下代码:
#利用索引,也可以做一些值的替换
a1 = np.arange(0,24).reshape((4,6))
a1[3] = 0 #将第三行的所有值都替换成0
print(a1)
# [[ 0 1 2 3 4 5]
# [ 6 7 8 9 10 11]
# [12 13 14 15 16 17]
# [ 0 0 0 0 0 0]]
3.2 使用条件索引来实现:
# 使用条件索引来实现
a1 = np.arange(0,24).reshape((4,6))
a1[a1 < 5] = 0 #将小于5的所有值全部都替换成0
print(a1)
# [[ 0 0 0 0 0 5]
# [ 6 7 8 9 10 11]
# [12 13 14 15 16 17]
# [18 19 20 21 22 23]]
3.3 使用函数来实现:
# where函数:
a1 = np.arange(0,24).reshape((4,6))
a2 = np.where(a1 < 10,1,0) #把a1中所有小于10的数全部变成1,其余的变成0
print(a2)
# [[1 1 1 1 1 1]
# [1 1 1 1 0 0]
# [0 0 0 0 0 0]
# [0 0 0 0 0 0]]