数据类型
string类型
存储的数据:单个数据,最简单的数据存储类型,也是最常用的数据存储类型。
存储数据的格式:一个存储空间保存一个数据
存储内容:通常使用字符串,如果字符串以整数的形式展示,可以作为数字操作使用。
string基本操作
代码 | 实现功能 |
---|---|
set key value | 设置数据 |
get key | 获取数据 |
del key | 删除数据 |
mset key1 value1 [key2 value2 … ] | 设置多个数据 |
mget key1 [key2 … ] | 获取多条数据 |
strlen key | 查询数据长度 |
append key value | 在特定的数据上追加信息(没有就新建) |
演示一下如何使用
需要注意的一个点:
根据上图,可以总结出一点,大量的数据进行传输的时候,一定要切开,分为更少的次数进行传输。比如说有一亿条,那么可以切为一百万条,之后分一百次传输。
string类型的扩展操作——解决主键重复的问题
代码 | 实现功能 |
---|---|
incr key | 某个键的值 + 1 |
incrby key increment_num | 增加某个键,增加多少看increment_num |
incrbyfloat key increment_num | 自增某个键,按照浮点类型 |
decr key | 某个键的值 - 1 |
decrby key decrease_num | 减少某个键的值,减少数量参考decrease_num |
演示样例:
所以这个num可以当做类似于MySQL当中的increment主键,达到主键不重复的目的。
现在再分析一种情况,几个小例子:
1、现在举行"最强程序员"的海选活动,通过微信投票,每个微信号4小时只能投一票。
2、电商商家开启热门商品推荐,但是一个商品不能一直处于热门期,一种商品只能维持三天热度,三天后热度自动取消。
3、热点网站会出现热点新闻,热点新闻最大的特征是时效性,怎样自动控制热点新闻的时效性
string类型数据的扩展操作——设置时间限制
代码 | 实现功能 |
---|---|
setex key seconds value | 写键值的时候,指定过期时间second |
psetex key milliseconds value | 写键值的时候,指定过期时间millisecond(毫秒级别) |
演示样例:
通过这样控制数据生命周期,通过数据是否失效控制业务行为,适用于所有具有时效性限制控制的操作上。
string数据类型的操作注意事项
1、数据操作不成功的反馈和数据正常操作的反馈之间的差异
(1)运行结果是否成功 (integer)0 ==》false | (integer) 1 ==》true 成功
(2)表示运行结果的值 (integer)num ==》 操作之后的value的长度是num
(3)nil ==》 相当于null,空值
string类型的应用场景
每次我们刷微博的时候经常会看见页面上有很多的点赞,关注等信息,那么如何使用redis来实现呢??
下面测试一下:redis当中存储用户收到的点赞量,blog数,关注的数量,以用户、主键和属性值作为key
分析:数据格式 user🆔property_value:用户信息
但是这样的话,每次都得根据用户关键字get很多次才可以得到用户的完整信息,我们想的是一次get出很多条,get出来的这些都是详细的用户信息。那么json格式应该是最合适的。
使用json格式存储用户的信息的操作:
Redis适用的场景
适用于各种结构型和非结构性高热度数据访问加速。使用键值存储对速度很有帮助。
关于Redis里面key的命名惯例
表名 | 主键名 | 主键值 | 属性名 |
---|---|---|---|
user | id | 95535 | name |
user | id | 95535 | blogs |
user | id | 95535 | fans |
Hash类型
刚才写的那些,字符串保存json信息虽然可以,但是看起来还是比较的笨重,但是把信息按照hash格式存储就会简单很多。
hash类型
- 新的需求: 对一系列存储的数据进行编组,方便管理,典型应用存储对象信息。
- 需要的存储结构:一个存储空间保存多个键值对数据
- hash类型:底层使用哈希结构实现数据存储
Reids使用hash存储空间
在hash当中的键值就不叫key-value了,叫做field-value了。
- 如果field的数量比较少,存储结构优化为类数组结构。
- 如果field的数量比较多,存储结构就使用hashmap结构
hash类型的基本操作
命令 | 实现功能 |
---|---|
hset key field value | 设置hash类型数据 |
hget key field | 得到key里面的域名称的值 |
hgetall key | 得到key里面所有的值 |
hdel key field1 [fiield2 …] | 根据key和field值删除数据 |
操作演示:
hash类型数据扩展操作
代码 | 实现功能 |
---|---|
hkeys key | 获取hash表当中的字段名 |
hvalus key | 获取hash表当中的字段值 |
hincrby key field increment_value | 增加指定字段的数值数据增加指定范围 |
hincrbyfloat key field increment_value | 增加指定字段的数值数据增加指定的范围 按照浮点数 |
多元操作
代码 | 实现功能 |
---|---|
hmset key field1 value1 [field2 value2 …] | |
hmset key field1 value1 [field2 value2 …] |
hash类型数据操作的注意事项
- hash类型下的value只能存储字符串,不允许存储其他数据类型,不存在嵌套现象。如果数据未获取到,对应的值为(nil)。
- 每个hash可以存储2的 32次幂-1 个键值对
- hash类型十分贴近对象的数据存储形式,并且可以灵活添加删除对象属性。但hash设计初衷不是为了存储大量对象而设计的,切记不可滥用,更不可以将hash作为对象列表使用
- hgetall操作可以获取全部属性,如果内部field过多, 遍历整体数据效率就很会低,有可能成为数据访问瓶颈。
hash的一个应用场景——电商网站购物车设计和实现
每当我们打开淘宝购物的时候,页面上都会显示很多的信息,商品的数量,商品名称信息,商品的总量,商品的勾选什么的。现在使用redis来个简单的实现,
业务分析
在这里仅分析购物车的redis存储模型添加、浏览、更改数量、删除清空这些问题。
解决方案
1、以客户id作为key,每位客户创建一个hash存储结构存储对应的购物车信息
2、将商品编号作为field,购买数量作为value进行存储
3、添加商品:追加全新的field与value
4、浏览:遍历hash
5、更改数量:自增/自减,设置value值
6、删除商品:删除field
7、清空:删除key
使用redis来操作一下:
但是这样真的是加速了购物车的实现吗?很显然不是,商品的基本信息还是得继续查询数据库,也就是需要二次查询。这也是浪费时间的。那么要是继续显示商品信息,如何做?
这里有一个解决方案:
就是每个商品保存两个field,一个是商品的数量信息,一个保存商品名信息,图片地址,商家信息,什么的,就像是一个hash里面又套了一个hash。field1:nums field2:info[…]
redis的hash类型还提供了一个这个方法:hsetnx key field value
,实现的功能是追加信息,如果信息存储在,不覆盖,直接跳过,如果不存在,就加进去。
hash类型的应用场景——客户抢购
假设在双十一的时候,某一商家面覅额提供30、50、100的手机充值卡若干,每种上线100张,那么如何实现这个抢购的功能??
解决方案
1、以商家id作为key
2、将参与抢购的商品id作为field
3、将参与抢购的商品数量作为对应的value
4、抢购时使用降值的方式控制产品数量
实现如下:
String(json)的实现和hash存储对象的比较
String + json数据格式,保证数据的完整性,强调的是数据的查询
hash储存对象储存的数据是分散的,强调的是数据的更新。
List类型
数据存储需求:存储多个数据,并对数据进入存储空间的顺序进行区分、
需要的存储结构:一个存储空间保存多个数据,且通过数据可以体现进入顺序
list类型:保存多个数据,底层使用双向链表存储结构实现
list类型基本操作:
操作 | 实现功能 |
---|---|
lpush key value1 [value2 …] | 从链表的左面进入 |
rpush key value1 [value2 …] | 从链表的右面进入 |
lpop key | 从链表得左侧拿出值 |
rpop key | 从链表得右侧拿出值 |
lrange key start stop | 从左到右按顺序读取(-1)代表倒数第几个 |
lindex key index | 从左侧开始查找下标是index的元素 |
llen key | 查看链表的长度 |
lindex和llen
list类型的扩展操作: lrem key count value
移除指定数量的数据:(这里是在list0当中删除 3 个 a)
list类型数据操作注意事项
1、list中保存的数据都是string类型的,数据总容量是有限的,最多2的32次方- 1个元素(4294967295)。
2、list具有索引的概念,但是操作数据时通常以队列的形式进行入队出队操作,或以栈的形式进行入栈出栈操作
3、获取全部数据操作结束索引设置为-1
4、list可以对数据进行分页操作,通常第一页的信息来自于list, 第2页及更多的信息通过数据库的形式加载
list的业务场景——热点资讯展示
在twitter、新浪微博、腾讯微博中个人用户的关注列表需要按照用户的关注顺序进行展示,粉丝列表需要将最近关注的粉丝列在前面。那么
1、新闻、资讯类网站如何将最新的新闻或资讯按照发生的时间顺序展示?
2、企业运营过程中,系统将产生出大量的运营数据,如何保障多台服务器操作日志的统一顺序输出?
那么我们打开多个客户端看看操作之后结果怎样:
我的顺序是从上到下的,所以最新的数据出现在最前面,使用list就可以反映数据插入顺序。
而且不仅如此,假如说在很多的服务器上都存在日志信息,如果我现在想得到所有的日志信息并且按照写入的时间先后顺序进行展示,如果让这四台服务器进行信息同步的话,那是相当麻烦的。但是假如都放到redis里面去,因为redis的list的特性,这个操作就极大地简化了。
set数据类型
1、新的存储需求:存储大量的数据,在查询方面提供更高的效率
2、需要的存储结构:能够保存大量的数据,效的内部存储机制,便于查询
set的存储结构和hash是一样的,都是field-value组成,只不过set的value始终是空的。
set的基本操作
代码 | 实现功能 |
---|---|
sadd key member1 [member2…] | 增加数据 |
smembers key | 查询set当中的数值 |
srem key member1 [member2…] | 删除数据 |
scard key | 查看key里面有多少元素 |
sismember key member | 某个值是不是key当中的元素 |
set类型业务场景
set类型数据的扩展操作
业务场景
每位用户首次使用今日头条时会设置3项爱好的内容,但是后期为了增加用户的活跃度、兴趣点,必须让用户对其他信息类别逐渐产生兴趣,增加客户留存度,如何实现?
业务分析
1、系统分析出各个分类的最新或最热点信息条目并组织成set集合
2、随机挑选其中部分信息
3、配合用户关注信息分类中的热点信息组织成展示的全信息集合
需要我们在所有的分类当中随机选取一些信息并且展示给用户,正好set提供一种随机的操作。
set 扩展操作——随机
代码 | 实现功能 |
---|---|
srandmember key [count] | 随机取出member当中的一些数据 |
spop key [count] | 随机删除key当中的一些数据 |
set业务场景
业务场景
脉脉为了促进用户间的交流,保障业务成单率的提升,需要让每位用户拥有大量的好友,事实上职场新人不具有更多的职场好友,如何快速为用户积累更多的好友?
新浪微博为了增加用户热度,提高用户留存性,需要微博用户在关注更多的人,以此获得更多的信息或热门话题,如何提高用户关注他人的总量?
QQ新用户入网年龄越来越低,这些用户的朋友圈交际圈非常小,往往集中在一所学校甚至一个班级中, 如何帮助用户快速积累好友用户带来更多的活跃度?
微信公众号是微信信息流通的渠道之一,增加用户关注的公众号成为提高用户活跃度的一 种方式,如何帮助用户积累更多关注的公众号?
美团外卖为了提升成单量,必须帮助用户挖掘美食需求,如何推荐给用户最适合自己的美食?
这些所有的问题都是推荐陌生人的问题,为了扩大交际圈,为了扩大认知度出现的问题,涉及到的都是共有一些东西,期望得到两个集合的并集,以此来保留用户活跃度。
set数据类型扩展操作
代码 | 实现功能 |
---|---|
sinter key1 [key2] | 求两个集合的交 |
sunion key1 [key2] | 求两个集合的并 |
sdiff key1 [key2] | 求两个集合的差 |
sinterstore destination key1 [key2] | 求两个集合的交,并且保存在destination集合里 |
sunionstore destination key1 [key2] | 求两个集合的并,并且保存在destination集合里 |
sdiffstore destination key1 [key2] | 求两个集合的差,并且保存在destination集合里 |
smove source destination member | 把一个集合移动到另外一个集合当中去 |
演示样例:
set类型数据操作的注意事项
1、set 类型不允许数据重复,如果添加的数据在set中已经存在,将只保留一份
2、set 虽然与hash的存储结构相同,但是无法启用hash中存储值的空间,因为filed对应的value是(nil)空值
set类型使用场景——不重复数据合并
就拿我们平时做项目来讲。每个人对不同的文件都有着不同的操作权限,可能在这个项目当中有这个权限,但是在另外一个文件当中又有另外一个权限,这么多的权限一般人肯定是记不住的,那么如何来获取权限呢?如果说用户已经有了权限,下次再赋予权限的时候,又应该如何跳过这次授权呢?
解决方案:
1、依赖set集合数据不重复的特征,依赖set集合hash存储结构特征完成数据过滤与快速查询
2、根据用户id获取用户所有角色
3、根据用户所有角色获取用户所有操作权限放入set集合
演示样例:
set应用场景——去重
公司对旗下新的网站做推广,统计网站的PV (访问量) ,UV (独立访客) ,IP (独立IP)。
PV:网站被访问次数,可通过刷新页面提高访问量
UV:网站被不同用户访问的次数,可通过cookie统计访问量, 相同用户切换IP地址, UV不变
IP:网站被不同IP地址访问的总次数,可通过IP地址统计访问量,相同IP不同用户访问, IP不变
解决方案:
1、利用set集合的数据去重特征,记录各种访问数据
2、建立string类型数据, 利用incr统计日访问量(PV)
3、建立set模型,记录不同cookie数量(UV)
4、建立set模型,记录不同IP数量(IP)
sort_set数据类型
1、新的存储需求:数据排序有利于数据的有效展示,需要提供-种可以根据自身特征进行排序的方式
2、需要的存储结构:新的存储模型,可以保存可排序的数据
3、sorted_set类型:在set的存储结构基础上添加可排序字段
sort_set数据结构图:
他的数据结构是和set一样的,只不过是把set没用到的那一块利用了起来,存放字段顺序,根据这个字段进行排序。
基本命令
代码 | 实现功能 |
---|---|
zadd key score1 member1 [score2 member2 … ] | 增加一个sort_set类型信息 |
zrange key start stop [wthscores] | 查询从下标start到stop的所有对象 从小到大的顺序 |
zrevrange key start stop [withscores] | 查询从下标start到stop的所有对象 从大到小的顺序 |
zrem key member1 [member2 … ]] | 删除集合内数据 |
zrangebyscore key min max [withscores] [limit] | 查询正向排序指定范围的值 |
zrevrangebyscore key max min [withscores] | 查询反向排序指定范围的值 |
zremrangebyrank key start stpp | 按照下标删除字段 |
zremragngebyscore key min max | 分数在某个范围之内的所有字段 |
演示样例:
按照范围查询和删除的功能:
小问题:有人会注意到有withscore和limit,第一个是带着分数一起输出,第二个是限制删除的个数。
sorted_ set类型数据的扩展操作
业务场景:
1、票选广东十大杰出青年,各类综艺选秀海选投票
2、各类资源网站TOP10 (电影,歌曲,文档,电商,游戏等)
3、聊天室活跃度统计
4、游戏好友亲密度
这些都是对所有参与排名的资源进行排序,就可以使用sort_set的排序的特点进行前几名的筛选。
这里就不演示了,上面的例子已经差不多了
扩展命令
代码 | 实现功能 |
---|---|
zcard key | 获取集合当中的数据个数 |
zcount key min max | 获取指定范围的数据个数 |
zinterstore destination numkeys key1 [key2 … ] | 集合的交操作 |
zunionstore destination numkeys key1 [key2 … ] | 集合的并操作 |
演示样例:
Key操作
key基本操作
代码 | 实现功能 |
---|---|
del key | 删除指定的key |
exists key | 指定的key是否存在 |
type key | 获取key的类型 |
我以前一直好奇,要是不知道数据库到底有多少表,那么岂不是相当的难管理,直到现在我才明白到底是如何查询数据库表的。key pattern
按照你给的字符进行筛选,原理和mysql的通配符差不多。
演示样例:
key扩展操作(时效性控制)
代码 | 实现功能 |
---|---|
expire key seconds | 设置有效期 单位为秒 |
pexpire key milliseconds | 设置有效期 单位为毫秒 |
expireat key timestamp | 设置有效期 时间是到某个时间的时间戳 |
pexpireat key milliseconds-timestamp | 设置有效期 时间是到某个时间的时间戳的毫秒形式 |
ttl key | 获取key的有效时间 |
pttl key | 获取key的有效时间 |
persist key | 切换key从时效性转换为永久性 |
演示样例:
key扩展操作(查询模式)
上面有key pattern
但是pattern具体是怎么使用还没说清楚
模式内容 | 表示含义 |
---|---|
keys * | 查询所有的 |
keys it* | 查询所有it 开头的 |
keys *heima | 查询所有前面任意字符,并且heima结尾的 |
keys ??heima | 查询所有前面两个字符,紧接着是heima的 |
keys users::? | user:开头,紧跟着一个任意字符的 |
keys u[st]ser :1 | 查询开头是u,er:1结尾,中间是一个s或者是t的 |
演示样例:
key其他操作
操作代码 | 实现功能 |
---|---|
rename key newkey | 重命名 |
renamenx key newkey | 重命名 |
sort | 对所有的key排序 |
help @generic | key 操作帮助信息 |
数据库通用操作
key的重复问题
在我们开发的过程当中,可能出现key的重复的问题,出现的情况如下
1、key是由程序员定义的
2、redis在使用过程中,伴随着操作数据量的增加,会出现大量的数据以及对应的key
3、数据不区分种类、类别混杂在一起,极易出现重复或冲突
解决方案
1、redis为每个服务提供有16个数据库,编号从0到15
2、每个数据库之间的数据相互独立
数据库基本操作
代码操作 | 实现功能 |
---|---|
select index | 切换数据库 |
quit | 退出数据库 |
ping | 验证数据库连接 |
echo message | 输出信息 |
演示样例:
DB相关操作
操作代码 | 实现功能 |
---|---|
move key db | 移动数据到某个数据库 |
dbsize | 数据库大小 |
flushdb | 删除当前数据库当中的内容 |
flushall | 删除所有数据库的内容 |
演示样例:
flushdb
和flushall
的操作就不演示了,说不定我的数据以后还有用呢……
总结:数据库应用的场景
Tips 2:redis控制数据的生命周期,通过数据是否失效控制业务行为,适用于所有具有时效性限定控制的操作
Tips 3:redis应用于 各种结构型和非结构型高热度数据访问加速
Tips 5:redis 应用于抢购,限购类、限量发放优惠卷、激活码等业务的数据存储设计
Tips 8:redis应用于随机推荐类信息检索,例如热点歌单推荐,热点新闻推荐,热卖旅游线路,应用APP推荐,大V推荐等
Tips 9:
1、redis 应用于同类信息的关联搜索,二度关联搜索,深度关联搜索
2、显示共同关注 (一度)
3、显示共同好友 (一度)
4、由用户A出发, 获取到好友用户B的好友信息列表(一度)
5、由用户A出发, 获取到好友用户B的购物清单列表(二度)
6、由用户A出发, 获取到好友用户B的游戏充值列表(二度)
Tips 10:redis 应用于同类型不重复数据的合并操作