图论笔记5:二分图

本文详细介绍了二分图的概念及其染色原理,通过链式前向星实现二分图染色,并给出了匈牙利算法的模板,包括基于链式前向星和邻接矩阵的实现。讨论了最大匹配与最小点覆盖的关系,并提供了相关例题,如'过山车'问题,进一步阐述了这些理论在实际问题中的应用。
摘要由CSDN通过智能技术生成

二分图定义

二分图 : 不存在奇数环,染色法不存在矛盾

二分图染色

一、二分图染色原理

就不多说,就是利用dfs进行染色(bfs也行)也就不多说了,用一条边连结的相邻的两个点要不同颜色,若两个相邻的点同色,就说明了这个图不是个二分图。

二、二分图染色板子

基于链式前向星

const int M = 1e5 + 10;
const int N = 1e5 + 10;
struct edge
{
    int next, to;
} e[M];
int head[N], color[N];
int n, m, cnt = 0;

void add(int u, int v)
{
    e[++cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt;
}
bool dfs(int x, int c)
{
    color[x] = c;
    for (int i = head[x]; i; i = e[i].next)
    {
        int v = e[i].to;
        if (!color[v])
        {
            if (!dfs(v, 3 - c))
                return 0;
        }
        else if (color[v] == c)
            return 0;
    }
    return 1;
}
bool check()
{
    memset(color, 0, sizeof color);
    bool flag = 1;
    for (int i = 1; i <= n; i++)
        if (!color[i] && !dfs(i, 1))
        {
            flag = 0;
            break;
        }
    return flag;
}
void solve()
{
    cin >> n >> m;
    memset(head, 0, sizeof head);
    for (int i = 1; i <= m; i++)
    {
        int u, v;
        cin >> u >> v;
        add(u, v), add(v, u);
    }
    if (check())
        cout << "Yes\n";
    else
        cout << "No\n";
}

三、模型

匈牙利算法

一、算法原理

简单来说就是,先按照一个顺序,先给第一个点匹配,然后再给第二个点匹配。。。。若当前需要匹配的点(记作点B)已经配匹配过了,那就用dfs查找匹配点B的点,是否能匹配下一个点,若可以,则将两点匹配,若不行,就将查找下一个与之相连的点是否符合条件,直到匹配,或者再没有能与之匹配的点。(可能有点乱,看看模板就可以理解)

二、算法模板

基于链式前向星

const int N = 510;
const int M = 1e5 + 10;
int n, m, k, cnt = 0;
int head[N], match[N];
bool bj[N];
bool maps[N][N];
struct edge
{
    int next, to;
} e[M * 2];

void add(int u, int v)
{
    e[++cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt;
}
int find(int x)
{
    for (int i = head[x]; i; i = e[i].next)
    {
        int v = e[i].to;
        if (!bj[v])
        {
            bj[v] = 1;
            if (!match[v] || find(match[v]))
            {
                match[v] = x;
                return 1;
            }
        }
    }
    return 0;
}
void solve()
{
    cin >> n >> m >> k;
    memset(match, 0, sizeof match);
    memset(head, 0 ,sizeof head);
    while (k--)
    {
        int u, v;
        cin >> u >> v;
        if (u == v || maps[u][v])
            continue;
        add(u, v);
        maps[u][v] = 1;
    }
    int ans = 0;
    for (int i = 1; i <= n; i++)
    {
        memset(bj, 0, sizeof bj);
        if (find(i))
            ans++;
    }
    cout << ans << '\n';
}

基于邻接矩阵

int find(int x)
{
    for (int i = 1; i <= m; i++)
    {
        if (!bj[i] && maps[x][i])
        {
            bj[i] = 1;
            if (!match[i] || find(match[i]))
            {
                match[i] = x;
                return 1;
            }
        }
    }
    return 0;
}
int solve()
{
    int ans = 0;
    for(int i = 1; i <= n; i++)
    {
        memset (bj, 0, sizeof bj);
        if(find(i))
            ans++;
    }
    return ans;
}

三、例题

1.过山车(fjutoj 1541)

http://120.78.128.11/Problem.jsp?pid=1541
纯板子题,就是将男女匹配,找最大匹配数就好了(套板子完事)

重要结论

最大匹配数 = 最小覆盖点 = 总点数 - 最大独立集 = 总点数 - 最小路径点覆盖

1.最小点覆盖

概念

最小顶点覆盖就是选择最少的点来覆盖所有的边。
在二分图中最小点覆盖等于最大匹配数。(一个定理)

证明

略。。。。。。。。
(作为一个没学过离散数学的ACMer来说,只能像放着等学了离散补上QAQ)

例题

1.机器任务(acwing 376)

https://www.acwing.com/problem/content/description/378/
这题可以将一个任务抽象成一条边,然后两种模式就是这条边的两个端点,如果想要执行此任务,则需要选出这两个端点的其中一个端点就好了,那不是变成了选出最少点,使所有边被覆盖,就是最小点覆盖,另外一开始两个机器都使模式0,那就是说,只要需要0模式的任务都可以在不重启的情况下执行,不要加边就好了。

2.Latin Square

题解见:
https://blog.csdn.net/qq_43085783/article/details/120836399?spm=1001.2014.3001.5501

2.最大独立集 和 最大团

概念

就是选出最多的点,使得这些点集中,任意两点都没有边。
最大团,则相反,选出最多点,使得任意两点间都有边。

证明

再一个二分图中,要选出最大独立集,则需要找出最少的点,用这些点,来破坏所有的边,那不就是找最小的点覆盖,由上方的结论得,就是找最大匹配。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值