Simon’s问题
f f f是一个黑盒函数,当输入一个长度为 n n n比特的字符串,将得到长度同样为 n n n比特的字符串。我们对其唯一只晓得性质便是 f f f是一个一对一或者二对一函数。
注:所谓一对一函数是指,对于每一不同输入都将精确地映射出一个独一无二的输出。
注:所谓二对一函数是指,对于每一个输出都仅对应着两个不同的输入。
对于二对一函数存在着一个隐藏的比特串 b b b:给定 x 1 , x 2 x_1,x_2 x1,x2若 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2)那么 x 1 + x 2 ( m o d 2 ) = b x_1+x_2(mod2)=b x1+x2(mod2)=b
Simon’s问题是,给定这样一个黑盒函数我们如何快速找到隐藏比特串 b b b?事实上对于一对一函数它的隐藏比特串 b b b显然为 ∣ 00 ⋯ 0 > |00 \cdots0> ∣00⋯0>。
经典求解
在经典情况下,若想要得到函数 f f f的隐藏比特串 b b b,我们需要输入 2 n − 1