HashMap
属性
DEFAULT_INITIAL_CAPACITY = 16 默认初始化容量
DEFAULT_LOAD_FACTOR = 0.75 默认加载因子
TREEIFY_THERSHOLD = 8 最小转红黑树链表长度
UNTREEIFY_THERSHOLD = 6 红黑树退化长度标准
MIN_TREEIFY_CAPACITY = 64 最少转红黑树数组长度
HashMap的数据结构
Node节点是HashMap的静态内部类,HashMap的基本存储单位
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
........
}
从结构上来看每一个Node都可以存储下一个Node节点,可以组成单向链表。
HashMap的数据结构就是一个Node数组。(链表长度>=7并且Node数组长度>64 链表转变成红黑树)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Gz5mPlXK-1590736414768)(C:\Users\Think\AppData\Roaming\Typora\typora-user-images\1590733175097.png)]
HashMap的put方法
public V put(K key, V value) {
//hash(Key) 求出key的Hash值(map中的hash方法并不是直接返回key.hashCode 而是对其进行了异或(^)运算,扰动hashCode的高位数值,目的当然是让后面通过hash值和Node[]长度进行按位与计算元素的存放位置时,在Node[]中更加分散)
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//首先判断一下table属性(map中默认的Node[])有没有初始化,如果没有初始化就进行初始化并且把长度保存下来
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//然后根据数组长度与hash进行按位与运算得出此次在Node数组中存放元素的位置,然后判断这个位置是否已经有元素了,如果没有那么直接创建一个新的Node节点存放
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//如果此处已经存放过元素了,进行以下操作
else {
Node<K,V> e; K k;
//首先判断一下此次添加元素是否与旧元素重复,如果重复就进行覆盖
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果没有重复,先判断一下p节点目前是不是TreeNode,是的话,就进行树节点添加
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果不是,那么看下面
else {
//这里binCount是用来计数的,计算Node数组当前位置的链表的长度
for (int binCount = 0; ; ++binCount) {
//这里我们要知道 p 不等 null 才会到这一步,p是这个链表的第一个元素,如果p的下一个元素等于 null 那么直接创建新的节点添加元素
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//这里先别看,看完下下个if再来看。
//看到这里的话你应该知道的差不多了,binCount计算链表的长度,当长度>=7时 会进入一个转红 黑树的方法中(一定会转红黑树吗? 你往下翻到 treeifyBin(tab, hash);这个方法的简单解析)
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果p的下一个元素(e)不是null,那么先对比一下p的下一个元素与需要添加的元素是否相等,相等就 直接退出循环(下面会进行替换操作)
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//如果不相等那么把e赋值给p继续循环(其实就是把p的下一个元素赋值给p)
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//我们看到 他一进入这个方法就会进行一个判断,我们这里关心(n = tab.length) < MIN_TREEIFY_CAPACITY(64) 这个条件,这个条件的意思就是Node数组的长度是否小于等于64。很显然如果我们的Node数组长度没有大于64,那么链表并不会转为红黑树,而是执行resize()去扩容Node数组的长度
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
//这里就是循环吧链表转红黑树了
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
HashMap的resize()方法
先说一下JDK1.8HashMap的扩容原理
在JDK1.8之前是创建一个2倍大小的新Node数组,然后将旧的数据重新hash添加进去
JDK1.8之后就不这样操作了,因为每次扩容都是原来的两倍,所以只需要将除了Node[0]之外的node数据往后挪一个 原数 组长度的位置就行了(比如 oldNode[1] 扩容之后 newNode[1+新数组长度])
//假设现在有一个初始化好的Node[]长度16的HashMap
final Node<K,V>[] resize() {
//首先把table赋值给oldTab
Node<K,V>[] oldTab = table;
//此时oldTab不等于null oldCap(旧数组容量)自然等于16
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//旧的阈值 12 = capacity * loadFactor
int oldThr = threshold;
//创建两个新的引用
int newCap, newThr = 0;
//如果旧容量大于0
if (oldCap > 0) {
//如果就容量大于最大可扩容容量 那么阈值直接给到最大就行,原Node数组也不需要再扩容直接返回
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//如果原数组容量扩容后 小于最大可扩容容量并且 oldCpa大于默认容量 那么将阈值也重新计算 注意这里并没有
//return 只是给newThr 赋值
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//重新计算newThr
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//将新的阈值赋值给 成员变量阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//创建新容量的Node数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//这里将oldTab的值转移到newTab
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}