抽象代数基本概念(三):子半群、子幺半群与理想

本文介绍了抽象代数中的重要概念,包括子半群、子幺半群和理想的定义、生成原理及性质。讨论了由集合生成的子半群和子幺半群的性质,以及证明了它们的交集仍然保持相应属性。同时,详细阐述了理想的概念,包括左理想、右理想和理想的生成方式,并通过定理证明了生成理想的特定形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

子半群:

           \,\,\,\,\,\,\,\,\,\, 设(S; ◦) 是一个半群,B 是S 的一个非空子集。如果对于 ∀ a , b ∈ B \forall a,b \in B a,bB,都有a ◦ b ∈ \in B,则称代数系(B; ◦) 是(S; ◦) 的一个子半群。简称B 是S 的一个子半群。
           \,\,\,\,\,\,\,\,\,\, (B; ◦) 的乘法与(S; ◦) 的乘法是一样的,否则,即使B 是S 的子集,(B; ⋆)也不是(S; ◦) 的一个子半群。

子幺半群:

           \,\,\,\,\,\,\,\,\,\, 设(S; ◦; e) 是一个幺半群,P ⊆ \subseteq S。如果e ∈ \in P,并且P 是S的子群,则称P是S 的子幺半群。

理想:

           \,\,\,\,\,\,\,\,\,\, 半群(S; ◦) 的一个非空子集A 称为S 的一个左(右)理想。如果SA ⊆ \subseteq A(AS ⊆ \subseteq A)。如果A 既是S 的左理想又是S 的右理想,则称A 是S 的理想。



一、由集合A生成的子半群和子幺半群:

  • 定义:
               \,\,\,\,\,\,\,\,\,\, 设(S; ◦) 是半群,A 是S 的一个非空子集,则S 的一切包含A 的子半群的交集称为由A 生成的子半群,记为(A)。设(M; ◦; e) 是幺半群,A 是M的一个非空子集,则M 的一切包含A 的子幺半群的交集称为由A 生成的子幺半群,记为(A)。
  • 相关定理:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值