半群:
\,\,\,\,\,\,\,\,\,\, 设(S; ◦) 是一个代数系,如果“◦“满足结合律,那么就称S 对于乘法“◦“构成一个半群(Semigroup),记为(S; ◦)
幺半群:
\,\,\,\,\,\,\,\,\,\, 有单位元素e 的半群(S; ◦) 称为独异点或者称为幺半群。记为(S; ◦; e)。如果S 是一个有限集合,则称(S; ◦; e) 为有限幺半群,S 的基数称为幺半群(S; ◦; e) 的阶。
一、幺半群性质定理:
-
定理:
- 幺半群性质定理:
\,\,\,\,\,\,\,\,\,\, 有限半群(S; ◦) 是一个幺半群当且仅当 ∃ s , t ∈ S \exist s ,t \in S ∃s,t∈S 使得sS = S; St = S。
- 幺半群性质定理:
-
证明:
- 必要性的证明:
\,\,\,\,\,\,\,\,\,\, 按照条件,是显然的。 - 充分性的证明:
证明策略:
\,\,\,\,\,\,\,\,\,\, 首先将问题分解为:
\,\,\,\,\,\,\,\,\,\, “(一) ∃ s ∈ S \exist s \in S ∃s∈S 使得sS = S,证明有限半群(S; ◦)有左幺元”;
\,\,\,\,\,\,\,\,\,\, “(二) ∃ t ∈ S \exist t \in S ∃t∈S 使得St = S,证明有限半群(S; ◦)有右幺元。”
\,\,\,\,\,\,\,\,\,\, 因为根据代数系的幺元的基本性质——“假若左右幺元同时存在,则二者相等且为唯一的幺元”,则只需要分别证明上述二者成立即可。
证明(一):
\,\,\,\,\,\,\,\,\,\, 因为 ∃ s ∈ S \exist s \in S ∃s∈S 使得sS = S从而将s的左乘视为一种从S到S的映射Φ(x)。因为Φ(x)是一个满射(每一个像都有原像)。而又因为|sS|=|S|,从而Φ(x)是满射的同时又一定是单射。从而Φ(x)是一个双射,根据定义它也是一个S上的置换(Permutation)。
\,\,\,\,\,\,\,\,\,\, 对于r阶循环置换δ来说,显然有 δ k r = I , k = 1 , 2 , 3... δ^{kr}=I,k=1,2,3... δkr=I,k=1,2,3...。而对于 Φ ( x ) = δ 1 δ 2 δ 3 . . . δ n Φ(x)=\delta _1\delta _2\delta _3...\delta _n Φ(x)=δ1δ2δ3...δn来说, Φ ( x ) k = δ 1 k δ 2 k δ 3 k . . . δ n k Φ(x)^k=\delta _1^k\delta _2^k\delta _3^k...\delta _n^k Φ(x)k=δ1kδ2kδ3k...δnk(置循乘法的交换率)。取k为 δ 1 δ 2 δ 3 . . . δ n \delta _1\delta _2\delta _3...\delta _n δ1δ2δ3...δn的最小公倍数,则可以使得 δ 1 k δ 2 k δ 3 k . . . δ n k \delta _1^k\delta _2^k\delta _3^k...\delta _n^k δ1kδ2kδ3k...δnk中的每一项均为 I I I(恒等置换)。从而证得存在一个S中元素, s k s^k sk为S的左幺元。
证明(二):同理可证。
举例说明:
\,\,\,\,\,\,\,\,\,\, 对于有限半群(S; ◦),有S={a,b,c,d,e,f,g,h},而且c(a,b,c,d,e,f,g,h)=(c,a,b,e,d,f,h,g)满足cS=S。从而c的左乘变换为S上的置换,且该置换可以分解为c(a,b,c,d,e,f,g,h)=c(a,b,c)*c(d,e)*c(f)*c(g,h),四个循环置换乘积。进而可得: c 6 ( a , b , c , d , e , f , g , h ) = ( a , b , c , d , e , f , g , h ) c^6(a,b,c,d,e,f,g,h)=(a,b,c,d,e,f,g,h) c6(a,b,c,d,e,f,g,h)=(a,b,c,d,e,f,g,h)
有关置换的补充:
\,\,\,\,\,\,\,\,\,\, 1)根据置换的基本性质定理,任何一个置换可以分解为若干不相关的循环置换的置循乘法乘积。而置循乘法满足性质——“不含有相同数字(即不相干)的循环置换的乘积是满足交换律的”。
\,\,\,\,\,\,\,\,\,\, 2)根据定理,含有r个数字的循环置换称之为r阶循环置换。而r阶循环置换δ的r次方 δ r δ^r δr即为恒等置换 I I I。
- 必要性的证明:
二、元素的幂与逆:
- 定义:
- 元素的幂:
\,\,\,\,\,\,\,\,\,\, 在半群(S; ◦) 中可以定义元素的正整数次幂: ∀ a ∈ S , a 1 = a , a n + 1 = a n ◦ a \forall a \in S,a^1=a,a^{n+1}=a^n◦a ∀a∈S,a1=a,an+1=an◦a
\,\,\,\,\,\,\,\,\,\, 在幺半群中=(S; ◦; e)中 可以定义元素的非负整数次幂: ∀ a ∈ S , a 0 = e , a 1 = a , a n + 1 = a n ◦ a \forall a \in S,a^0=e,a^1=a,a^{n+1}=a^n◦a ∀a∈S,a0=e,a1=a,an+1=an◦a
\,\,\,\,\,\,\,\,\,\, 由归纳法可证:设(S; ◦; e) 是一个幺半群,m; n 是任意的非负整数 ∀ a ∈ S a m a n = a m + n ; ( a m ) n = a m n \forall a \in S\,\,\,\,a^ma^n=a^{m+n};(a^m)^n=a^{mn} ∀a∈Saman=am+n;(am)n=amn - (幺半群)元素的逆:
\,\,\,\,\,\,\,\,\,\, 设(S; ◦; e) 是一个幺半群, ∀ a ∈ S \forall a \in S ∀a∈S。称a 有左逆元素,如果存在 a l ∈ S a_l \in S al∈S使得 a l a_l al ◦ a = e,这时 a l a_l al称为a 的左逆元素。称a 有右逆元素,如果存在 a r ∈ S a_r \in S ar∈S 使得a ◦ a r a_r ar = e,这时 a r a_r ar 称为a 的右逆元素。如果存在 b ∈ S b \in S b∈S使得a ◦ b = b ◦ a = e,则称a 有逆元素,b 称为a 的逆元素。
\,\,\,\,\,\,\,\,\,\, 如果幺半群(S; ◦; e) 中的元素a 有左逆元素 a l a_l al,又有右逆元素 a r a_r ar,则 a l = a r a_l=a_r al=ar。于是a 有逆元素并且逆元素唯一。记为 a − 1 a^{-1} a−1。
- 元素的幂:
三、习题:
- 1.证明:有限半群(S; ◦) 中一定有一个元素
a
∈
S
a \in S
a∈S,使得a ◦ a = a。
- 思路:
\,\,\,\,\,\,\,\,\,\, 考虑简单的计数原理,对于 a ∈ S , ∣ S ∣ = n a \in S,|S|=n a∈S,∣S∣=n ,a的幂次 a 2 , a 3 , a 4 , a 5 . . . a n , a n + 1 , a n + 2 a^2 ,a^3,a^4,a^5...a^n,a^{n+1},a^{n+2} a2,a3,a4,a5...an,an+1,an+2构成的序列一共有着n+1个值。则其中一定存在两个幂次 a i a^i ai和 a j a^j aj(i<j),使得 a i a^i ai= a j a^j aj。 如果有j=2i,则 a j = a i ◦ a i = a i a^j=a^i◦a^i=a^i aj=ai◦ai=ai,即该问题得证。
\,\,\,\,\,\,\,\,\,\, 但是计数原理得到的结论 a i a^i ai= a j a^j aj对于i,j并没有什么限定。然而我们可以假设有一个正整数x使得j+x=2(i+x)。从而可以根据 a i a^i ai= a j a^j aj构造出 a i ◦ a x = a i + x = a j + x = a j ◦ a x a^i◦a^x=a^{i+x}=a^{j+x}=a^j◦a^x ai◦ax=ai+x=aj+x=aj◦ax,而 a j + x = a i + x ◦ a i + x = a i + x a^{j+x}=a^{i+x}◦a^{i+x}=a^{i+x} aj+x=ai+x◦ai+x=ai+x,进而得证此问题。也就是说,证明问题的关键是确保x=j-2i有正整数解。 - 证明:
\,\,\,\,\,\,\,\,\,\, 对于 ∀ a ∈ S \forall a \in S ∀a∈S,可以构造一个序列 a 3 , a 9 , a 27 . . . a 3 n , a 3 n + 1 , a 3 n + 2 a^3,a^9,a^{27}...a^{3^n},a^{3^{n+1}},a^{3^{n+2}} a3,a9,a27...a3n,a3n+1,a3n+2因为这个序列一共有n+1个值,则其中一定存在两个值 a 3 i a^{3^i} a3i= a 3 j a^{3^j} a3j(i<j)。则 a 3 i ◦ a 3 j − 2 ∗ 3 i a^{3^i}◦a^{3^j-2*3^i} a3i◦a3j−2∗3i= a 3 j ◦ a 3 j − 2 ∗ 3 i a^{3^j}◦a^{3^j-2*3^i} a3j◦a3j−2∗3i,即 a 3 j − 3 i a^{3^j-3^i} a3j−3i= a 2 ∗ 3 j − 2 ∗ 3 i = a 3 j − 3 i ◦ a 3 j − 3 i a^{2*3^j-2*3^i}=a^{3^j-3^i}◦a^{3^j-3^i} a2∗3j−2∗3i=a3j−3i◦a3j−3i 。Q.E.D.
- 思路: