极化码的BP译码

本文深入探讨极化码的Belief Propagation(BP)译码方法,从min-sum近似开始,详细解析了极化码因子图中的信息传递过程,包括四种主要的传递方式,并通过具体推导展示每个步骤。同时,文章指出短环在译码中的问题,解释了极化码BP译码时可能遇到的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在上篇LDPC的文章分析了BP译码的相关思想,现在我们开始研究极化码的BP译码该如何进行。

Ⅰ.min-sum的近似

min-sum推导

         当只有3个变量节点和1个校验方程时,上篇文章的L(r_{ij})就会变成下式,并可以进一步使用min-sum近似。

3个变量节点和1个校验方程的近似

 Ⅱ.极化码因子图的信息传递和公式推导

         因为极化码构造时的Fn的特性,所以只存在4种信息传递方式(2种左信息、2种右信息)。

极化码信息传递时的因子图

 1.L_{RL}^{k}(i)的推导

①的推导

 2.L_{RL}^{k}(j)的推导

②的推导

  3.L_{LR}^{k}(i)的推导

③的推导

 4.L_{LR}^{k}(j)的推导

④的推导

  Ⅲ.极化码BP译码的理解

 1.短环为什么不能译码问题

短环译码情况

        极化码的环:

        

N=4时的环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值