题解:就是给你一个n*n的矩阵,输入的格式不需要去管,然后的话,让你求子矩阵的最大的和
**分析:通过转换成最大字段和
第一步: a[i][k]=a[1][k]+ …… +a[i][k]
第二步:t[k]=s[j][k]-s[i][k];
第三步:求t[]的最大字段和**
原因:假设最终的子矩阵和行是i、j;
那么最终是求(a[i][1]+ …… +a[j][1],a[i][2]+ …… +a[j][2], …… ,a[i][n]+ …… +a[j][n])的最大字段和。
#include<bits\stdc++.h>
using namespace std;
int a[105][105];
#define INF 1e9
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = 1;i<=n;i++)
for(int j = 1;j<=n;j++)
{
scanf("%d",&a[i][j]);
a[i][j]+=a[i][j-1];
}
int ans = -INF;
int res;
for(int i = 1;i<=n;i++)
for(int j = i;j<=n;j++)
for(int k = 1,res=0;k<=n;k++)
{
res+=a[k][j]-a[k][i-1];
if(res<0)
res=0;
ans = max(ans,res);
}
printf("%d\n",ans);
}
}