自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI相关从业分享

AI相关从业分享

  • 博客(151)
  • 资源 (2)
  • 收藏
  • 关注

原创 dify新特性:并行agent/工作流开发与变量存储

dify现在开辟了一个存储空间,可以持久化存储中间变量,之前信息需要长久留存依赖工具设计,需要在本地设计txt、redis等存储模块,现在则无需依赖。dify最新版提供并行特性,模块支持多入多出,无需多言,这极大丰富了开发内容和开发模式。

2024-09-27 11:38:18 349

原创 多模态大模型赋能工程设计合规性校验解决方案

工程建设应用场景下,存在接入方式图、接线图、配置图、安装图等典型设计原则,通过人工智能和大模型相关技术,可实现对工程建设有关图纸的智能分析识别。

2024-09-27 11:25:15 1049

原创 moonshot:一个用于评估任何 LLM 应用程序的简单模块化工具

Moonshot 由 AI Verify Foundation 开发,是首批将基准测试和红队结合在一起的工具之一,可帮助 AI 开发人员、合规团队和 AI 系统所有者评估 LLM 和 LLM 应用程序。通过 Moonshot 库 API 或 Moonshot Web API 无缝集成到您的 MLOps 工作流程中。当然我自身工作不涉及评估,有需求的网友可以测试一下看看。用户友好的 Web UI - Web UI 用户指南。交互式命令行界面 - CLI 用户指南。

2024-08-26 16:51:56 554

原创 大模型高效利用结构化信息研究:HTML格式或许更好

哪种形式能让大模型发挥出更高的实用价值呢?A Benchmark and Empirical Study》该篇研究工作可能会给我们一些启发。如何让大模型更好地理解和利用结构化信息是大模型应用开发者关注的焦点,Markdown、LaTeX、JSON等格式是我们所想到的处理手段。由图可知,将结构化信息利用脚本预处理为html格式或许对大模型进行信息利用有所帮助。

2024-08-26 16:43:18 595

原创 CyberScraper-2077+simple-one-api:使用大模型爬虫

CyberScraper 2077 不仅仅是另一个网络抓取工具——它是对数据提取未来的一瞥。诞生于赛博朋克世界霓虹灯闪烁的街道,这款 AI 驱动的抓取工具使用 OpenAI 切开网络的防御,以无与伦比的精度和风格提取您需要的数据。

2024-08-23 09:12:07 922

原创 开源大模型LLaMA架构介绍

抛砖引玉,用最近获取的一些资料,介绍一些羊驼模型的技术点和发展历史。

2024-08-20 15:51:11 1229 4

原创 快速web开发:Vue和FastAPI完美组合

Vue.js和FastAPI的结合,为开发者提供了一种高效、易维护且可扩展的前后端分离开发方案。Vue.js以其优雅的界面交互和组件化设计,为用户带来良好的体验;在这种趋势下,Vue.js和FastAPI这两大技术栈因其出色的性能和易用性,受到了广大开发者的青睐。接下来,我们创建一个Vue.js前端项目,用于调用FastAPI后端API并展示数据。Vue.js是一款渐进式的前端框架,它以其轻量级和高效性著称,为开发者提供了一种全新的开发体验。命令,启动Vue.js的开发服务器。为什么选择Vue.js?

2024-08-20 15:23:22 966

原创 一文带你入门大模型微调

什么是大模型微调?通用大模型是基于互联网公开的海量知识进行预训练的,具备很强的通识能力,但大模型在垂直或特定领域的表现往往并不尽如人意。大模型微调是在通用大模型的基础上对超出范围或特定领域的知识,使用专门数据集或方法进行相应的调整优化,以提升其在特定领域或任务中的适用性和完成度。为什么需要大模型微调?大模型在处理特定行业或私域的专业知识文档、专业术语、业务流程时,可能存在理解不足或胜任力有限的情况,在大模型有限的参数规模下,其学习到的知识是有限的,机制上决定了大模型无法也不可能全知全能。

2024-08-16 18:57:17 1005

原创 分享一个sh脚本测试网络连通性

【代码】分享一个sh脚本测试网络连通性。

2024-08-15 11:30:21 189

原创 大模型Prompt trick:利用大模型同情心提升模型性能

最近的研究表明,ChatGPT不光情商得分比人类更高,甚至还会在被夸后表现更优异。在诊断精神疾病以及帮助治疗师以更有感情的方式传达诊断结果方面,人工智能均展现出了出众的才能,这再次将机器人的情绪刺激与感知功能置于舆论风口。多次研究与用户的实际体验似乎都在说明同一个道理:人工智能不仅能识别情感,还会对人类的情感做出回应。虽然还没有确凿的证据表明有用,但是在部分案例上,这个trick好像确实起到了一定作用。最近有博主分享了有趣的Prompt trick,这里跟大家讨论一下。

2024-08-15 11:25:39 429

原创 DIfy中集成magic-pdf实现文档解析agent与多模态大模型图文问答

Dify 是一款开源的大语言模型(LLM)应用开发平台。它结合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者能够快速构建生产级的生成式 AI 应用。Dify 提供了内置的模型支持、Prompt 编排、RAG 引擎、Agent 框架、流程编排等技术栈,以及易用的界面和 API,支持自部署和数据控制。这个平台特别适合于创业公司快速将 AI 应用创意变为现实,也适用于将 LLM 集成到现有业务中,或作为企业级的 LLM 基础设施。

2024-08-13 10:29:52 2237

原创 再分享API形式调用Dify项目应用

返回结果为json格式文件。

2024-08-06 15:56:16 1390

原创 【BUG】‘latin-1‘ codec can‘t encode characters

【代码】【BUG】‘latin-1‘ codec can‘t encode characters。

2024-08-02 16:10:49 146

原创 telnet与ping:测试IP及端口连通性

ping 是一个广泛使用的网络诊断工具,它通过发送 Internet Control Message Protocol (ICMP) echo 请求到目标并监听回应报文来测试与目标主机的连通性。众所周知的、老生常谈的、好用有效的。

2024-08-01 09:43:00 655

原创 详细记录swfit微调interVL2-8B多模态大模型进行目标检测(附代码)

目标检测任务已经不是一个新鲜事了,但是多模态大模型作目标检测任务并不多见,本文详细记录swfit微调interVL2-8B多模态大模型进行目标检测的过程,旨在让更多人了解多模态大模型微调技术、共享微调经验。实际上,interVL2-8B多模态大模型在该任务上微调后的表现并不好。与此同时,我们还就电力巡检场景进行了微调测试,精度达到了80左右,其实也比较一般,综合来看,大模型其实并不那么擅长目标检测。此处引申一个结论,大模型在分类任务上表现则好得多,且提升精度微调是必要的。

2024-07-31 18:42:26 2497 6

原创 一文带你了解大模型RAG

简单来说,大模型RAG,即Retrieval-Augmented Generation,是一种结合了检索和生成能力的预训练语言模型。它由两部分组成:一个检索系统和一个生成模型。由上,可以简单总结RAG实现过程。应用侧:需求——知识库检索——结果召回——LLM 提示词、Agent等有关开发——LLM结合需求+知识库检索结果进行回答——结束实现侧:文档上传——文本分段和清洗——嵌入模型选型、文本嵌入——重排模型选型、召回参数配置——召回测试——知识库应用集成。

2024-07-31 09:17:15 1085

原创 离线条件下linux的docker及docker-compose快速部署(附资源)

这些配置文件允许用户以声明性的方式定义应用程序的组件,包括容器、网络、卷和数据卷等。Docker Compose 是一个强大的工具,特别是对于开发、测试和轻量级生产环境中的应用程序部署。使用 docker-compose stop、docker-compose start、docker-compose rm 等命令来管理服务的生命周期。创建一个 docker-compose.yml 文件,定义应用程序的服务、网络和卷。服务定义了容器在生产中的行为,包括构建设置、环境变量、依赖、卷映射和端口映射等。

2024-07-29 18:39:33 1119

原创 MOE模式:或将是最好的大模型应用开发路径

MOE(Mixture of Experts,混合专家)是一种机器学习模型架构,旨在通过结合多个专家网络来提高模型的性能和泛化能力。以下是传统模型和大模型中MOE模式的相关介绍及其优势。传统模型中的MOEGate网络:决定输入数据应该被路由到哪一个专家网络。Gate网络可以根据输入数据的特征来动态分配数据。Expert网络:一系列专门的网络,每个网络都是针对特定数据分布进行训练的。Expert网络可以是对特定问题有深入理解的小模型。组合层:将所有Expert网络的输出进行组合,形成最终的预测结果。

2024-07-28 20:53:06 1171

原创 再谈Agent:Dify智能体实现Txet2SQL

什么是Agent?Agent的是能够在一定环境中自主运作并完成特定任务的程序或者系统。自主性:Agent能够在没有人为干预的情况下运行,并独立做出决策。适应性:Agent能够根据环境的变化调整自己的行为。反应性:Agent能够对环境中的变化做出快速反应。预动性:Agent不仅对环境做出反应,还能主动采取行动以实现目标。社会性:多个Agent之间可以进行交互,合作完成更复杂的任务。

2024-07-26 09:44:34 2466 2

原创 一文讲透过拟合与欠拟合

选择合适的模型复杂度、进行有效的特征工程、合理地调整超参数,以及使用数据增强和集成学习等技术,都是提升模型泛化能力的有效手段。模型的泛化能力决定了其在新数据上的表现,而这一能力往往受到过拟合(Overfitting)和欠拟合(Underfitting)的影响。过拟合是指模型在训练数据上表现得过于完美,以至于捕捉到了数据中的噪声和细节,导致其在新数据上的泛化能力下降。欠拟合指的是模型在训练数据上没有获得足够的学习,无法捕捉到数据的基本结构,既不能在训练集上表现良好,也不能在新的数据上做出准确的预测。

2024-07-25 08:52:28 344

原创 Mem0:大模型最强赋能“有记忆的LLM”

Mem0一方面可以基于记录做应用的优化,另一方面用户对话记录本身也是良好的大模型微调、训练数据。于是Mem0开源了Mem0有助于更好地了解用户及其偏好,比如他们是谁、他们做什么、他们的位置、编码、写作和其他偏好。Mem0的目标是提供一个智能的、自我改进的内存系统,能够根据用户互动存储、回忆和完善信息,使AI交互更加个性化和具有上下文感知能力。此外,项目使AI系统能够维护针对特定用户、特定会话和特定代理的内存。

2024-07-24 11:04:34 740

原创 Conda pack 进行Python环境打包

工程项目落地免不了环境部署,可以使用conda-pack 进行conda 环境打包和分发。

2024-07-23 11:02:47 639

原创 miniconda+xinference的大模型推理部署指南

大模型专栏涉及模型推理的内容很多,我之前涉及推荐过书生浦语家的lmdeploy、最典型的vllm原生框架、swfit微调框架(具备模型部署能力)。今天想完整地给大家分享大模型推理部署指南,使用的是xinference,该框架封装了vllm,此外不仅支持推理模型,对于嵌入模型、重排模型也友好支持。默认大家具备Anaconda或miniconda环境,没有的话自行下载即可。环境部署简单粗暴,给大家打包到云盘里,嵌入、重排、推理模型这里也都提供了模型,解压后就能用,这里不赘述了。上干货!

2024-07-19 15:48:22 908

原创 无痛接入PDF-Extract-Kit:最强PDF文档解析项目

由于文档类型的多样性,现有开源的布局检测和公式检测很难处理多样性的PDF文档,为此我们内容采集多样性数据进行标注和训练,使得在各类文档上取得精准的检测效果,细节参考布局检测和公式检测部分。对于公式识别,UniMERNet方法可以媲美商业软件,在各种类型公式识别上均匀很高的质量。安装完环境后,可能会遇到一些版本冲突导致版本变更,如果遇到了版本相关的报错,可以尝试下面的命令重新安装指定版本的库。除了版本冲突外,可能还会遇到torch无法调用的错误,可以先把下面的库卸载,然后重新安装cuda12和cudnn。

2024-07-19 15:08:38 1219

原创 【Screen BUG】OSError: [Errno 22] Invalid argument: ‘\u202aC:解决方法

一个神奇的BUG。

2024-07-17 16:52:54 382

原创 多模态大模型Internvl-2-26B的OCR赋能方案(附代码)

模型部署:functions.py:config.py:数据预处理:预处理结果:处理前数据格式众多:处理后pdf转化为jpg图像,并存储与新的文件夹中。OCR识别:识别后将每一图片信息提取为指定格式的json示例(为保证隐私,信息已经改写):合并json信息,其中考虑每个人最高学历进行处理:总结开发测试数据132项。对于文件命名、文件内容、抽取规范都做了异常error记录,在人工校验中重点关注;本次测试error项3个。无error的文件因为本地模型性能问题现在生成内容也存在一

2024-07-16 17:42:12 1489

原创 机器学习工程实践:手把手解读LGBM算法风电负荷预测任务(附代码/数据)

风电负荷预测是指在一定的时期内,根据风电场的运行特性、历史数据、气象条件等因素,对风电场的发电量进行预测的过程。它是电力系统运行的重要组成部分,对于保证电力系统的安全、经济、可靠运行具有重要意义。在本次任务中,该任务可以理解为是利用气象、发电等历史数据,对未来一定时间的发电量进行预测。

2024-07-16 17:26:14 187

原创 多模态大模型Internvl-1.5-26B微调后部署及测试实录(附代码)

基于之前研究。

2024-07-12 17:45:35 1631

原创 机器学习扫盲:优化算法、损失函数、评估指标、激活函数、网络架构

AUC衡量的是在不同的判定门槛下,模型识别正类的能力与误将负类判为正类的风险之间的平衡。在评估和比较多个模型的表现时,AUC尤其有价值,但为了深入掌握每个模型在各个方面的优劣,最好还是将它与其他性能指标一并参考。它为我们提供了一个模型表现的直观表示,帮助识别模型的错误之处。平均绝对百分比误差(MAPE)是一个衡量预测准确性的指标,它通过计算预测值与实际值之间差异的百分比,然后取这些百分比差异的平均值来实现。召回率,也叫灵敏度,是评估在所有真正的正例中,有多少被我们的模型正确识别出来的比例。

2024-07-12 10:59:47 234

原创 一文带你入门机器学习超参数优化算法

在机器学习领域,模型参数与超参数构成了算法的关键组成部分。模型参数是指那些通过训练过程,依据训练数据集自动调整的参数,它们是模型内部学习结果的直接体现。相对而言,超参数则是在训练过程启动之前,由研究者或实践者手动设定的参数集合,它们不是基于数据直接学习得到的。例如,在决策树算法中设定的最大深度、支持向量机中选择的具体核函数、以及神经网络中的学习率与隐藏层单元数量等,均属于超参数范畴。超参数的选定对模型的效能和训练效率具有决定性影响。

2024-07-12 10:21:44 186

原创 一文带你入门机器学习降维算法

降维算法在机器学习中扮演着非常重要的角色,主要用于处理高维数据,以便更好地理解和分析数据。在对项目进行数据工程后,获取指定特征,特征若维数太多,则可应用此类算法降维,之后可以将降维后的特征作为特征数据对机器学习算法进行训练。

2024-07-12 10:12:29 138

原创 swift与Internvl下的多模态大模型分布式微调指南(附代码和数据)

微调框架:swift微调模型:internvl-chat-v1_5微调任务:多模态大模型在指定任务上的OCR能力微调优化微调显存:55G,多batch时对单卡要求较高(4090不能满足需求)

2024-07-10 10:59:29 3420 10

原创 对话大模型Prompt是否需要礼貌点?

例如,对于GPT模型,当输入的礼貌程度降低时,输出的长度也会相应减少。对于Llama模型,降低礼貌程度通常会导致对话长度的缩短,但如果是极其不礼貌的输入,对话长度反而会显著增加。在使用这些模型时,一个值得探讨的问题是:否需要在与语言模型的交往中体现基本的礼貌,给予合理的尊重?追求一种"中庸之道",既不过于简陋粗鲁,又避免过分谦卑逊色,让语气保持在一个恰到好处的亲和且专业的程度。在与对话大模型交互时,研究发现,无论输入的礼貌程度如何,ROUGE-L和BERTScore这两种评估文本生成质量的。

2024-07-07 22:20:11 743

原创 一文带你入门机器学习聚类算法

聚类任务(Clustering Task)是机器学习中的无监督学习问题之一。在聚类任务中,模型的目的是将无标签的数据集分成若干个群组,使得同一个群组内的数据点彼此相似,而不同群组间的数据点尽可能不同。聚类是一种探索性的数据分析技术,它可以帮助我们发现数据内在的结构和模式。

2024-07-04 17:25:48 146

原创 一文带你入门机器学习分类算法

分类任务(Classification Task)是有监督学习中的一类重要问题,它的目标是预测给定数据的离散标签或类别。在分类任务中,模型会根据训练数据学习输入特征和输出类别之间的关系,然后对新的、未见过的数据进行类别预测。

2024-07-04 17:04:40 440

原创 一文带你入门机器学习回归算法

回归任务是机器学习中的一个重要分支,它专注于预测一个连续的数值型目标变量。在回归任务中,模型通过学习输入特征和目标变量之间的关系,来预测新的数据点的目标值。

2024-07-04 16:45:31 127

原创 数据预处理:统计关联性分析/数据清洗/数据增强/特征工程实例

数据预处理是机器学习领域中的一个重要步骤,它包括对原始数据进行清洗、转换和处理,以便更好地适应机器学习模型的训练和应用。数据预处理的主要目的是提高数据的质量,确保数据的一致性和准确性,从而提高机器学习模型的性能和泛化能力。数据预处理的重要性体现在以下几个方面:提高数据质量:数据质量直接影响机器学习模型的性能。通过数据预处理,可以识别和处理数据中的噪声、缺失值和异常值,从而提高数据的质量。模型性能提升:有效的数据预处理可以显著提高模型的精确度和可靠性。

2024-07-04 16:15:35 145

原创 面向txt/json/xlsx/csv的文件读写及编码问题

面向小白进行一些文件读写的代码分享,值得注意的是,读写过程中最为需要关注的是编码问题,本文进行了一点技巧分享。

2024-07-04 15:46:05 120

原创 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例

数据采集在机器学习领域中扮演着至关重要的角色。它是数据分析、机器学习和人工智能应用的基础。数据采集的目的是通过各种手段和技术手段,收集、整理、存储和处理各类数据。这些数据可以来自不同的来源,如传感器、日志、社交媒体、数据库等,并可能包括结构化数据、非结构化数据和时序数据等不同类型。Selenium、正则匹配、XPath和BeautifulSoup是网络爬虫中常用的技术手段,它们各自有不同的特点和用途。SeleniumSelenium是一个自动化测试工具,但它也常被用于网络爬虫中。

2024-07-04 15:30:32 457

原创 Semantic Kernel:微软大模型开发框架——LangChain 替代

Semantic Kernel:一个集成大型语言模型 (LLM) 的 SDK,如 OpenAI、Azure OpenAI、 以及使用 C#、Python 和 Java 等传统编程语言的 Hugging Face。语义内核实现了这一点 通过允许您定义可以链接在一起的插件 只需几行代码。然而,语义内核的特别之处在于它能够自动编排 带有 AI 的插件。使用语义内核规划器,您可以 可以要求 LLM 生成实现用户唯一目标的计划。之后 语义内核将为用户执行计划。

2024-07-04 11:14:42 1544

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除