国内版的AI编程工具Trea,真的来了!免费使用DeepSeek!

上周我写了一篇文章介绍了字节跳动的AI编程工具Trea,可以免费使用Claude最新的3.7-Sonnet,但是因为其还是海外版的,登录需要一些手段,同时因为发了文章后知道消息的人太多,Claude 3.7-Sonnet一直在等待中或者请求失败。具体可以看这篇文章:

我在文章的末尾说得到内部消息,预计3.3号会发布国内版,然后今天真的来了,不愧是我的内部消息~那么今天,我就来介绍下国内版的Trea,与海外版有较大不同!

Trea(国内版)

首先,前往官网下载软件(链接在最后),软件支持mac、windows和linux三大平台,下载完后一路确定安装就行。

安装完成后,打开运行,登录可以选择手机号登录也可以使用稀土掘金账号一键登录

界面与海外版的一致,但是重点来了,与海外版不同的是,国内版的大模型只有字节自己的Doubao-1.5-pro,以及深度求索DeepSeek的V3和R1版本(海外版的是ChatGPT以及Claude-3.5-Sonnet和3.7-Sonnet)

有一说一,在体验了各类生成式AI下来,DeepSeek虽然在开源、成本和深度思考等方面比其它大模型有一定优势,但从编程来说还是Claude更为强大。

项目测试

我们直接用项目来进行测试,还是用上次的贪吃蛇为例子。首先我们先创建一个文件夹用来存放项目文件

然后我们选择DeepSeek R1模型,然后切换到Builder模式

在输入框中输入“写一个贪吃蛇游戏”,然后回车发送

可以看到AI在进行思考分析后,直接生成了代码文件(本系统已安装了python环境),我只需要点击全部接受,代码就会实装。

然后我们直接运行文件

可以看到基本的核心功能是正常实现的,上下左右移动、吃一个变长、吃到自己游戏结束等等,当然跟海外版一样的是界面仍有小问题,比如方块显示文字、游戏结束没有标识等等,但都是无伤大雅的小问题。

感想

我用这些编程工具也挺久了,虽然最好用的还是Cursor,但是价格和某些因素导致用起来略显复杂,像之前写一个简单的python爬图片脚本都是把想法放到kimi对话框里聊,但是对话框总归是有字数限制,达到上限之后又得重新聊。

而像Cursor、Trea这类AI编程工具好就好在它能直接根据你现在编辑的项目去跟你进行对话,而国内版Trea又好在国人可以放心、无门槛的使用这个高级的功能。作为一个编程半路出家的网络工程师,AI最牛的地方在于我只需要有代码逻辑、功能想法,而不用纠结于我需要怎么写代码、写哪些代码才能实现我想要的功能。

不同的编程语言有着各自的编程规则,比如C语言要这样写才能实现这个功能,C++要那样写,java要这样写,python又要那样写,但是对我来说,我很明确的就是我要实现这个功能。

而AI对我编程最大的帮助就是,我不需要考虑那些乱七八糟的,我只需要明确我的需求,并尽量能让AI能够理解我的需求并实现就行了。

保持学习

市面上有很多人在发布一些“不学AI就会被淘汰”这类容易引起人们焦虑的话题,但其实我想说AI从23年一直到现在25年,人们的生活该怎么过还是怎么过,AI确实取代了很多行业,比如客服、比如前端程序员,跟AI相关的概念股也是爆一个火一个,但是AI终究是AI,我家是卖灯的,你AI在牛也代替不了灯本身。

AI最大的作用是提高了效率,所以你不用天天担心自己不学AI就会被淘汰,但是如果你的效率不比AI,又还不愿意尝试使用AI来提升效率,那你活该被淘汰了。因为这时候就算没有AI,也会有一个牛马大学生来替代你。

### 使用 DeepSeek 进行 Python 仿真的教程 #### 创建 AI 并进入控制台 为了使用 DeepSeek 的 Python 仿真功能,首先需要完成基本设置。这包括访问官方网站 `www.deepseek.com` 和通过推荐的方法之一验证身份[^2]。 #### 构建风险评估模型实例 一旦成功登录并熟悉了核心界面之后,可以利用 DeepSeek 来创建复杂的风险评估模型。以下是两个具体的例子: ##### 财务危机预警(Altman Z-Score) 该模型用于预测企业可能面临的财务困境。实现此目的的一种方式是编写一段 Python 代码来计算 Altman Z-Score 模型中的各个参数,并基于这些分数判断企业的健康状况。 ```python def calculate_altman_z_score(working_capital, retained_earnings, ebit, market_value_equity, sales): """ 计算 Altman Z-score. 参数: working_capital (float): 流动资本总额 retained_earnings (float): 留存收益 ebit (float): 息税前利润 market_value_equity (float): 股东权益市值 sales (float): 销售收入 返回: float: Altman Z-score 结果 """ a = working_capital / total_assets b = retained_earnings / total_assets c = ebit / total_assets d = market_value_equity / total_liabilities e = sales / total_assets z_score = 1.2 * a + 1.4 * b + 3.3 * c + 0.6 * d + 1.0 * e return z_score ``` ##### 舆情传播仿真(SIR 模型) 另一个有趣的模拟项目是对舆情扩散过程的研究。这里采用经典的 SIR 模型——Susceptible-Infectious-Recovered Model,在流行病学领域广泛应用。同样可以通过编程的方式重现这一现象。 ```python import numpy as np from scipy.integrate import odeint def sir_model(y, t, N, beta, gamma): """定义 SIR 模型.""" S, I, R = y dSdt = -beta * S * I / N dIdt = beta * S * I / N - gamma * I dRdt = gamma * I return dSdt, dIdt, dRdt # 初始条件和时间向量设定... N = 1000 # 总人口数 I0, R0 = 1, 0 # 已感染者数量, 康复者数量 S0 = N - I0 - R0 t = np.linspace(0, 160, 160) # 解微分方程组得到随时间变化的趋势曲线... ret = odeint(sir_model, [S0, I0, R0], t, args=(N, beta, gamma)) S, I, R = ret.T ``` 上述两段代码展示了如何借助于 DeepSeek 提供的强大工具集来进行不同类型的 Python 仿真活动。无论是金融还是社会科学研究方面的需求都能得到有效满足[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不言仙声

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值