自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 C++随笔4——类的封装及控制访问

C++随笔

2022-09-03 22:12:25 342 1

原创 c++随笔3——C++对C的函数扩展

C++随笔

2022-08-31 20:33:34 417 1

原创 C++随笔2——引用

C++随笔之引用

2022-08-28 21:39:01 286

原创 C++随笔

c++编译器与c编译器的区别,随笔

2022-08-27 20:56:53 252

原创 Udacity传感器融合笔记(三)Camera与lidar数据融合(下)

本篇博客为Camera与Lidar数据融合的下部分,主要记录如何将Lidar点云数据映射到camera图像数据。在介绍如何映射之前,先要了解一下什么是相机的外参和内参:1.相机的外参矩阵 包含两部分 :旋转矩阵R和平移矩阵T。描述的是世界坐标系和相机坐标系的相互位置关系。告诉我们如何将世界坐标系的一个三维点通过外参的坐标变换,变换到相机坐标系上。2.相机的内参矩阵K,描述的是相机坐标系和图像坐标系的位置关系。告诉我们如何将步骤1相机坐标系上的坐标转换为像素坐标系上的坐标3.畸变矩阵,由于镜头误差等因

2020-12-03 14:12:07 1269 1

原创 sizeof()、size()、length()、strlen()的区别

1.sizeof()是一个运算符 获取类型原型所用的字节长度bool: 1个字节char :1个字节(固定)short int : 2个字节(固定)int: 4个字节(固定)unsigned int : 4个字节(固定)float: 4个字节(固定)double: 8个字节(固定)long: 4个字节unsigned long: 4个字节long long: 8个字节(固定如:sizeof(3)=4 sizeof(3.14)=8sizeof用法:sizeof(对

2020-12-03 10:08:12 1241

原创 Udacity传感器融合笔记(三)Camera与lidar数据融合-(上)

之前两篇文章记录了lidar感知相关笔记,这篇记录视觉感知以及视觉数据和lidar数据的简单融合。直接上干货。文章主要记录两部分:1.lidar数据的处理2.camera与lidar数据的融合关于视觉部分的基础知识这里不再记录,主要包括图像特征点的提取,关键点、描述子、角点的定义。图像特征点的匹配等等。1.Lidar点云处理对于第一部分,要达到的效果就是对lidar数据的过滤处理,同时离本车近的数据点我们红红色表示,离本车远的数据点,我们用绿色表示,中间依次过渡。先放结果图:图中一个蓝色线格代表

2020-12-02 14:56:56 1200

原创 Udacity传感器融合笔记(二)lidar 点云处理

本篇博客主要记录lidar点云的分割以及聚类。1.Segmentation 点云分割对于lidar反馈回来的数据,我们总是希望从中准确的找到那些是障碍物,那些是道路点。为此,udacity课程中使用了RANSAC算法来进行点云的分割,将lidar点云分为障碍物点(外点)和道路点(内点)两类。1.1 RANSAC对于RANSAC算法(随即抽样一致算法),初次接触是在高博的视觉SLAM14讲中,该算法可以从一组包含“局外点”的数据中通过迭代的方式估计数学模型的参数,从而找到符合模型的“局内点”。这里不多

2020-11-16 15:40:14 844 1

原创 Udacity 传感器融合笔记 (一)lidar

Udacity 传感器融合笔记 (一)lidar点云分割

2020-11-15 15:29:30 1069 5

原创 VIO学习笔记(二):估计器的初始化问题

VIO学习笔记(二):估计器的初始化问题继上篇学习了IMU传感器的测量原理之后,今天来说说VIO估计器的初始化问题。1.什么是VIO估计器的初始化?初始化就是把变量赋值为默认值,把控件设置为默认状态,把每准备好的准备好。这么看来,初始化问题似乎并不那么困难,但不幸的是,把初始化这个定义用在整个系统层面来讲就不是那么简单的了,系统的初始化是指系统在初次使用时,根据实际情况进行参数设置,涉及到实...

2019-10-27 18:42:06 1291

原创 VIO学习笔记(一) IMU传感器测量原理

标题:vio学习笔记(一) IMU传感器测量原理在开始介绍IMU这种传感器之前,我们先大体谈一谈VIO的发展背景,VIO是一种视觉惯性估计器,在传统视觉里程计中加入了IMU的信息.那么没什么要加入IMU呢? 原因在于,在单目系统中,我们很难结算出绝对的尺度信息,这样,我们辛辛苦苦建立的视觉定位系统就无法在实际工程中有良好的应用效果.此外,VO系统还有以下缺点,都使得VIO系统逐步发展起来:(1...

2019-10-14 20:05:44 3469

原创 视觉SLAM十四讲笔记:G2O库的安装

在学习高翔大神的视觉SLAM十四讲的安装G2O库的时候遇到了无法安装依赖的问题.当时费劲九牛二虎的力气(有夸大成分)解决之.当时没有记笔记或者写博客的习惯.匆匆了之继续奋斗在SLAM前线去了.后来电脑重新装了ubuntu系统.如今又遇到了G2O库的安装问题 .后悔当初,但为时已晚.为避免今后遇到类似的问题,遂记录下这次的解决方式.以便日后查阅.同时希望能给有相同问题的战友们一点帮助:G2O库是一...

2019-04-30 19:01:42 4184 4

原创 浅谈opencv库中的特征点提取与匹配(四)——ORB特征点提取详解

上篇博文中,小楼给大家介绍了SIFT特征点,这中特征点的优势固然明显,但随着带来的副作用也是巨大的.(老天爷从来都是公平的).那就是它巨大的计算量.目前来说,还没有那种cpu能够实时的计算SIFT特征点.今天,介绍给大家一种相对来说更加完美的特征点–ORB特征.ORB特征是近年来非常具有代表性的一种特征.它采用关键点和二进制描述子来对特征点进行判定与描述.下面为大家详细介绍ORB特征.1. ...

2019-04-29 20:52:57 4262 3

原创 浅谈OpenCV库中的特征点提取与匹配(三)——SIFT特征点提取详解

在前两篇文章中,楼主已经向大家展示了Ubuntu16.04+OpenCV-3.1.0(带contrib模块)的安装编译方法。接下来,我们开始进入正题,特征点提取与匹配的实践操作。本篇文章中,我将着重介绍SIFT这种特征点以及做一个简单的特征点提取实践。1.什么是特征点?首先我们来介绍一下什么是特征点,从字面的意思上来解释就是能反应事物特征的点,在事物的自然特征点中,多为角点、边上的点、以及面点...

2019-04-27 16:47:11 2771 4

原创 浅谈opencv库中的特征点提取与匹配(二):工具准备——opencv的contrib模块的配置

在Ubuntu16.04中安装好opencv-3.1.0以后,有的同学会发现opencv中并没有sift、surf等特征点提取与匹配的文件,这是由于这部分文件都集成在contrib这个模块中。因此,为了后续的实验操作,我们需要将contrib模块与OpenCV一起编译。楼主在安装这个模块的时候遇到了很多问题,经过网上搜索各路大神的博客与教程,终于在自己的不断尝试下编译成功。为了避免后续同学同样采坑...

2019-04-25 16:05:46 557

原创 浅谈opencv库中的特征点提取与匹配(一):工具准备——ubuntu16.04下安装opencv3.1.0

最近在学习使用opencv进行图像处理,收获颇丰的同时也踩了不少坑。简单记录一下自己的学习过程,以便日后随时复习以及与广大感兴趣的网友随时交流,欢迎大家随时交流,本人会尽量答复。 由于是第一次编写博客,多有不足之出请见谅。 闲话不多说,进入今天的正题:opencv 中几种特征点提取与匹配算法的比较 opencv 是大型的图像处理库,上面集成了绝大多数关于图像...

2019-04-24 15:16:12 834 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除