前言
对于求最小最大问题,一般可与贪心联系起来,比如求最少步数,可以找每步能走的最远距离,以此达到最小步数。
一、跳跃游戏II
二、贪心思想练习
1、大顶堆优先队列
// 跳跃游戏II
public class Jump {
/*
target:最少多少步能走到最后一个位置。
找每走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。
*/
public int jump(int[] nums) {
if (nums.length == 1) return 0;
// 大顶堆。
PriorityQueue<int[]> que = new PriorityQueue<>((o1, o2) -> o2[0] + o2[1] - o1[0] - o1[1]);
que.offer(new int[]{0, nums[0]});
int cnt = 1;
while (!que.isEmpty()) {
int[] arr = que.poll();
if (arr[0] + arr[1] >= nums.length - 1) return cnt;
for (int i = arr[0] + 1; i <= arr[0] + arr[1] && i < nums.length; i++) {
que.offer(new int[]{i, nums[i]});
}
++cnt;
}
return cnt;
}
}
2、改进–记录最大值即可
// 记录跳的最远的位置即可,不需要用优先队列每次offer都logn
class Jump2 {
/*
target:最少多少步能走到最后一个位置。
找没走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。
*/
public int jump(int[] nums) {
if (nums.length == 1) return 0;
// max(下标 + 跳跃步数)
int[] maxDis = new int[]{0, nums[0]};
int cur = 1;
int cnt = 1;
while (true) {
if (maxDis[0] + maxDis[1] >= nums.length - 1) return cnt;
int end = maxDis[0] + maxDis[1];
while (cur <= end) {
if (cur + nums[cur] > maxDis[0] + maxDis[1]) {
maxDis[0] = cur;
maxDis[1] = nums[cur];
}
++cur;
}
++cnt;
}
}
}
总结
1)贪心,想找最小,就必须大步往前走,想100米成绩好,就要跑的更快。
参考文献
[1] LeetCode 跳跃游戏II