跳跃游戏II[贪心练习]

前言

对于求最小最大问题,一般可与贪心联系起来,比如求最少步数,可以找每步能走的最远距离,以此达到最小步数。

一、跳跃游戏II

在这里插入图片描述

二、贪心思想练习

1、大顶堆优先队列

// 跳跃游戏II
public class Jump {
    /*
    target:最少多少步能走到最后一个位置。
    找每走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。
     */
    public int jump(int[] nums) {
        if (nums.length == 1) return 0;
        // 大顶堆。
        PriorityQueue<int[]> que = new PriorityQueue<>((o1, o2) -> o2[0] + o2[1] - o1[0] - o1[1]);
        que.offer(new int[]{0, nums[0]});
        int cnt = 1;
        while (!que.isEmpty()) {
            int[] arr = que.poll();
            if (arr[0] + arr[1] >= nums.length - 1) return cnt;
            for (int i = arr[0] + 1; i <= arr[0] + arr[1] && i < nums.length; i++) {
                que.offer(new int[]{i, nums[i]});
            }
            ++cnt;
        }
        return cnt;
    }
}

2、改进–记录最大值即可

// 记录跳的最远的位置即可,不需要用优先队列每次offer都logn
class Jump2 {
    /*
    target:最少多少步能走到最后一个位置。
    找没走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。
     */
    public int jump(int[] nums) {
        if (nums.length == 1) return 0;
        // max(下标 + 跳跃步数)
        int[] maxDis = new int[]{0, nums[0]};
        int cur = 1;
        int cnt = 1;
        while (true) {
            if (maxDis[0] + maxDis[1] >= nums.length - 1) return cnt;
            int end = maxDis[0] + maxDis[1];
            while (cur <= end) {
                if (cur + nums[cur] > maxDis[0] + maxDis[1]) {
                    maxDis[0] = cur;
                    maxDis[1] = nums[cur];
                }
                ++cur;
            }
            ++cnt;
        }
    }
}

总结

1)贪心,想找最小,就必须大步往前走,想100米成绩好,就要跑的更快。

参考文献

[1] LeetCode 跳跃游戏II

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值