目标和 [从暴力dfs -> 状态记录 -> 动态递推 -> 状态压缩]

前言

从数组中找多个数字,其之和等于target,一般的思想就是dfs进行组合。
但耗时太多,则可以将dfs中重复计算的地方进行记录,空间换时间,即记忆搜索法。
但这种记忆搜索法只记录了一些重复计算的地方,还没将空间换时间发挥到极致。
此时可动态递推来完成求解,即动态规划。动态规划中的状态往往是层层递推的,所以在空间上可以做到进一步优化,即动态压缩。

一、目标和

在这里插入图片描述

二、dfs - > 状压

1、暴力dfs

// 暴力dfs
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums,0,target);

    }
    private int dfs(int[] nums,int i,int target){
        if(i == nums.length)
            return target == 0 ? 1 : 0;
        
        return dfs(nums,i + 1,target - nums[i]) + dfs(nums,i + 1,target + nums[i]);
    }

2、状态记录

// 记忆数组
    final static int N = 1000;
    public int findTargetSumWays(int[] nums, int target) {
        int[][] f = new int[nums.length][4 * N + 1];
        
        return dfs(nums,0,target,f);

    }
    private int dfs(int[] nums,int i,int target,int[][] f){
        if(i == nums.length)
            return target == 0 ? 1 : 0;

        if(f[i][target + 2 * N] != 0) return f[i][target + 2 * N];

        f[i][target + 2 * N] = dfs(nums,i + 1,target - nums[i],f) + dfs(nums,i + 1,target + nums[i],f);

        return f[i][target + 2 * N];
    }

3、动态递推

// 动态规划。
    // f[i][j]:表示前i个数组成和为target的个数。
    final static int N = 1000;
    public int findTargetSumWays(int[] nums, int target) {
        int[][] f = new int[nums.length + 1][4 * N + 1];
        f[0][2 * N] = 1;
        
        for(int i = 1;i <= nums.length;i++){
            for(int j = 0;j <= 4 * N;j++){
                if(j >= nums[i - 1]) f[i][j] = f[i - 1][j - nums[i - 1]];
                if(j + nums[i - 1] <= 4 * N) f[i][j] += f[i - 1][j + nums[i - 1]]; 
            }
        }
        return f[nums.length][2 * N + target];

    }

4、状态压缩

// 状态压缩,由于每次状态都和上一层有关,且和前面的未知位置有关,所以采用一维数组,
    // 由于和前后状态都有关,所有需两个一维数组。
    final static int N = 1000;
    public int findTargetSumWays(int[] nums, int target) {
        int[][] f = new int[2][4 * N + 1];
        int idx = 0;
        f[idx][2 * N] = 1;
        for(int i = 1;i <= nums.length;i++){
            for(int j = 0;j <= 4 * N;j++){
                f[(idx + 1) & 1][j] = 0;
                if(j >= nums[i - 1]) f[(idx + 1) & 1][j] = f[idx][j - nums[i - 1]];
                if(j + nums[i - 1] <= 4 * N) f[(idx + 1) & 1][j] += f[idx][j + nums[i - 1]]; 
            }
            idx = (++idx) & 1;
        }
        return f[idx][2 * N + target];

    }

总结

1)从最简单的dfs暴力逻辑;到利用空间记录重复计算,即记忆搜索;再到极致的空间换时间,即动态规划;最后到空间优化,即状态压缩。形成一个完整的逻辑链,一个完整的优化闭环。

2)做好完整逻辑闭环,知其中每个细节点的因果逻辑,才能充分理解它,做到融合贯通,举一反三。

参考文献

[1] LeetCode 目标和

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
有一个由多个小正六边形组成的蜂巢图案,蜂巢外缘各边的小正六边形数量 一致,且左右对称。 左右对称 (上图蜂巢图案外缘各边小正六边形数量为2) 以下为竖直对称线上小正六边形个数为3、5、7的3个蜂巢图案。 以下为竖直对称线上小正六边形个数为3、5、7的3个蜂巢图案。 编程实现: 有一只蜗牛要从竖直对称线顶端的小正六边形处移动到底端的小正六边形 中,它每次只能向它所在位置的小正六边形的左下方、正下方、右下方相邻 的小正六边形处移动。 中,它每次只能向它所在位置的小正六边形的左下方、正下方、右下方相邻 的小正六边形处移动。 已知竖直对称线上有N 个小正六边形,请计算出蜗牛从竖直对称线顶端移动 到底端共有多少条不同的移动路线。 例如: N=3, 竖直对称线上有3个小正六边形,如下图: 1 1 3 5 蜗牛从竖直对称线顶端的小正六边形处(1号处)移动到另一端的小正六边 形中(7号处)共有11条不同的路线。 11条不同的路线分别为: (1->2->5->7)、 (1->2->4->7)、 (1->2->4->5->7)、 (1->2- >4->6->7)、 (1->4->5->7)、 (1->4->7)、 (1->4->6->7)、 (1->3->4->5->7)、 (1->3->4->7)、 (1->3->4->6->7)、 (1- >3->6->7)。 输入描述 输入一个正整数N(2<N<30,N 上小正六边形的个数 输出措述 为奇数),表示图案上竖直对称线 输出一个整数,表示蜗牛从竖直对称线顶端移动到底端共有多少条不 同的移动路线
05-29

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值