图网络学习三

ER Graph

ER Graph是Erdos-Renyi Graph的缩写,它是最简单、最符合直觉的随机图,常用在这里插入图片描述表示,n表示节点数,p表示一个给定的概率值。ER Graph是一张无向图,有n个节点,每条边的连接概率是p,且各条边是否连接是彼此独立的。换句话说,给定n和p,我们就可以生成一张ER图了。
注意,同样的n和p,生成的两张ER图可能是不一样的。
下面来计算ER图的四个度量指标。

1.度分布

ER图中,每条边的连接概率都是p,所以每条边是否连接服从概率为p的0-1分布,对任意节点而言,度为k等价于n-1个边里有k个是连接的,这等价于另一个熟悉的描述——抛n-1次硬币k次正面朝上,这正是二项分布的经典描述。因此,ER图的度分布是二项分布,度均值是 在这里插入图片描述
[ 注意 ] 我们在这里讨论的度分布是概率意义上的,可以理解为,在已知n和p的前提下,针对所有可能的ER图计算度分布,上一讲给出的度分布定义是频率意义上的,是针对某一个确定的图的,这是两者的区别所在。其他度量指标也需要以概率视角来理解。
在这里插入图片描述

2.集群系数

因为每条边出现的概率都是p,所以很容易推导得到每个节点的集群系数都是p,推导过程如下图。
在这里插入图片描述

3.路径长度

恕笔者才疏学浅,这里涉及扩展性(expansion)的定义及相关定理,暂时无法给出讲解。只能给出一个定性的结论:在 [公式] 的前提下,平均路径长度与n呈对数关系。
在这里插入图片描述

4.连通分量

同样只能给出定性结论:度均值为1是一个拐点,当度均值大于1时,会出现与节点数同样数量级的连通分量。
在这里插入图片描述

MSN vs ER

上一讲提到的MSN社交网络有180M节点、1.3B条边,可以对标 [公式] 的ER图,两者的四个度量指标对比结果如下图,二者最大的区别在于度分布和集群系数,尤其是集群系数,相差7个数量级之多。
在这里插入图片描述
那么问题来了,我们能不能找到另一种随机图生成方式,让平均路径长度和平均集群系数同时接近真实网络呢

Small World Graph

我们首先观察下面两个图,一个是ER图,路径长度偏小且集群系数也偏小,另一个是栅格图,路径长度偏大且集群系数也偏大,这是两种极端状态,都与真实网络存在很大的偏差,于是我们可以猜想,二者之间可能存在某种中间状态,与真实网络更加接近。那么,如何找到这种中间状态呢?
在这里插入图片描述
1998年,Duncan J. Watts and Steven Strogatz找到了这个中间状态——具备高集群系数和低路径长度的网络,他们称之为小世界网络(Small World Graph)。生成小世界网络的方法十分精巧,如下图所示,先构造一个环形网络,结构类似上方提到的栅格网络,每个节点只与它附近的k个节点相连,然后以概率p对每条边替换一个端点,p越大,发生替换行为的边越多。p与集群系数、路径长度的关系如下图的曲线所示,随着p的增大,路径长度迅速下降,集群系数缓慢下降,因此我们就可以找到一个折中点,使得集群系数偏大而路径长度偏小。
在这里插入图片描述
在这里插入图片描述
采用上述方法生成的小世界网络虽然在集群系数和路径长度上与真实网络十分接近,但是度分布依然相差很远,有没有更接近真实网络的随机图呢?

Kronecker Graph

Kronecker Graph是2010年一篇论文Kronecker Graph中提出的随机图生成方法,它利用Kronecker product来生成随机图,由此得名。这是一种递归生成方法,从某种角度来说,与分形的概念有些相似。

先看看什么是Kronecker product,这是一种简单的矩阵运算,就是在A矩阵的每个元素上都乘以B矩阵,生成一个更庞大的矩阵。
在这里插入图片描述
把Kronecker product应用于图的邻接矩阵,就可以递归构造出一张无穷大的图来,比如下面的例子,一个33的图,借助一次Kronecker product生成了一张99的图。
在这里插入图片描述
我们的目标是生成随机图,邻接矩阵中的元素替换为边的连接概率,然后根据矩阵中每个元素的概率值随机生成每条边即可。但是这样做,生成一张图的时间复杂度是 在这里插入图片描述有没有更快的办法呢?
在这里插入图片描述
观察Kronecker Graph可以发现,大多数边的连接概率很小,所以我们可以用启发式方法逐个生成连边,这样就可以避免做无用功——为不相连的边浪费算力。

假定初始邻接矩阵 [公式]是22的,四个元素分别是a、b、c、d,利用Kronecker product后可以生成一个88的邻接矩阵,这个88的邻接矩阵可以看成 [公式]的三层嵌套,如下图。
在这里插入图片描述
我们把从外到内的三层依次编号为1,2,3。每一轮,根据概率分布为每一层随机生成一个坐标,比如,从外到内的坐标依次是(0,1) (1,0) (1,1),对应到8
8的矩阵上的坐标就是(3,5),计算过程如下:
在这里插入图片描述
上述启发式方法的流程描述如下,x和y的迭代就是在矩阵上移动坐标位置。
在这里插入图片描述
按照上述启发式方法,可以逐个生成连边,直到连边数满足我们的需求为止。Kronecker Graph的度量指标与相近规模的真实网络十分接近。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
倾斜摄影深度学习维建是利用深度学习技术来进行倾斜摄影维建的方法。传统的倾斜摄影维建方法通常依赖于特征提取、匹配和几何计算等步骤,而深度学习技术可以通过端到端的训练,直接从原始学习并预测维地或建筑模型。 在倾斜摄影深度学习维建,常用的方法是基于卷积神经网络(Convolutional Neural Networks, CNN)的像语义分割和深度估计。具体流程如下: 1. 数据准备:收集倾斜摄影像和相应的地物维数据作为训练数据集。地物维数据可以通过传统的方法获取,如激光扫描或结构光扫描。 2. 像语义分割:使用卷积神经网络对倾斜摄影像进行语义分割,将的不同地物类别进行标记,如建筑物、道路、树木等。 3. 深度估计:利用卷积神经网络对倾斜摄影像进行深度估计,预测出每个像素点的深度信息。 4. 点云生成与模型重建:根据语义分割和深度估计的结果,将倾斜摄影像转化为点云数据,并利用点云数据进行模型重建,如体素化、角网格重建等。 倾斜摄影深度学习维建方法的优势在于可以通过大规模的训练数据集和端到端的训练过程,直接从学习高级特征和几何信息,提高了建模的精度和效率。然而,深度学习方法也需要大量的标注数据和计算资源支持,并且对于一些复杂场景和细节信息的建模仍然存在挑战。因此,在实际应用,深度学习方法往往与传统方法结合使用,以获得更好的建模效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刹那永恒HB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值