
数值分析
qq_43193797
github:https://github.com/yanjie666
展开
-
Fitted PD 的计算
PD模型的计算原创 2024-10-25 14:52:34 · 262 阅读 · 0 评论 -
pd模型的计算公式解释
pd模型的计算公式解释原创 2024-10-25 10:05:40 · 287 阅读 · 0 评论 -
Jacobi迭代法公式推导
考察Jacobi迭代法和G-S迭代法的矩阵形式及收敛性原创 2020-09-10 17:55:40 · 3178 阅读 · 0 评论 -
非线性方程实用收敛性的判别以及收敛阶
一:导数小于1难以验证的解决方法二:迭代速度的快慢原创 2020-08-20 11:44:26 · 2747 阅读 · 1 评论 -
矩阵分析
原创 2020-08-10 14:19:17 · 286 阅读 · 0 评论 -
Cholesky分解法
Cholesky分解法又叫平方根法,是求解对称正定线性方程组最常用的方法之一。对于一般矩阵,为了消除LU分解的局限性和误差的过分积累,采用了选主元的方法,但对于对称正定矩阵而言,选主元是不必要的。代码:#include <iostream> #include <string.h> #include <stdio.h> #include <vector> #include <math.h> using nam原创 2020-07-30 23:59:48 · 3743 阅读 · 0 评论 -
利用矩阵LU分解解线性方程组
原创 2020-07-30 14:05:20 · 2376 阅读 · 0 评论 -
数值分析基础:向量的范数
范数的概念向量的范数是一种用来刻画向量大小的一种度量。实数的绝对值,复数的模,三维空间向量的长度,都是抽象范数概念的原型。上述三个对象统一记为 [公式] ,衡量它们大小的量记为 [公式] (我们用单竖线表示绝对值,双竖线表示范数),显然它们满足以下三条性质:随着以后的学习我们可以知道,长度是范数的一个特例。事实上,二范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的。我们下面给出向量范数的一些性质:我们对于第四条性质给出证明。该性质我们可以理解为两边之差小于第三转载 2020-07-17 14:35:35 · 3433 阅读 · 0 评论