
机器学习
qq_43193797
github:https://github.com/yanjie666
展开
-
过拟合和欠拟合
文章转载自: https://blog.csdn.net/weixin_42575020/article/details/82949285 开始我是很难弄懂什么是过拟合,什么是欠拟合以及造成两者的各自原因以及相应的解决办法,学习了一段时间机器学习和深度学习后,分享下自己的观点,方便初学者能很好很形象地理解上面的问题。 无论在机器学习还是深度学习建模当中都可能会遇到两种最常见结果,一种叫过拟合(over-fitting )另外一种叫欠拟合(under-fitting)。 首先谈谈什么是过拟合呢?什么又是欠拟合转载 2020-09-22 16:31:27 · 252 阅读 · 0 评论 -
推荐系统算法介绍
原创 2020-05-07 21:44:49 · 239 阅读 · 0 评论 -
机器学习模型介绍
原创 2020-05-07 16:05:28 · 442 阅读 · 0 评论 -
机器学习简介
主要内容 •机器学习的概念 •机器学习主要分类 •监督学习三要素 •监督学习模型评估策略 •监督学习模型求解算法 一、机器学习的概念 •机器学习是什么 •机器学习的开端 •机器学习的定义 •机器学习的过程 •机器学习示例 机器学习是什么 •什么是学习 –从人的学习说起 –学习理论;从实践经验中总结 –在理论上推导;在实践中...原创 2019-04-08 20:23:31 · 2397 阅读 · 2 评论 -
信息增益的理解
理解(1) 熵:表示随机变量的不确定性。 条件熵:在一个条件下,随机变量的不确定性。 信息增益:熵 - 条件熵 在一个条件下,信息不确定性减少的程度! 通俗地讲,X(明天下雨)是一个随机变量,X的熵可以算出来, Y(明天阴天)也是随机变量,在阴天情况下下雨的信息熵我们如果也知道的话(此处需要知道其联合概率分布或是通过数据估计)即是条件熵。 两者相减就是信息增益!原来明天下雨例如信息熵是...转载 2019-04-27 21:09:06 · 597 阅读 · 0 评论 -
常用推荐算法分类
•基于人口统计学的推荐与用户画像 •基于内容的推荐与特征工程 •基于协同过滤的推荐原创 2019-05-09 23:36:27 · 272 阅读 · 0 评论