
线性代数
qq_43193797
github:https://github.com/yanjie666
展开
-
Cholesky分解法
Cholesky分解法又叫平方根法,是求解对称正定线性方程组最常用的方法之一。对于一般矩阵,为了消除LU分解的局限性和误差的过分积累,采用了选主元的方法,但对于对称正定矩阵而言,选主元是不必要的。代码:#include <iostream> #include <string.h> #include <stdio.h> #include <vector> #include <math.h> using nam原创 2020-07-30 23:59:48 · 3743 阅读 · 0 评论 -
利用矩阵LU分解解线性方程组
原创 2020-07-30 14:05:20 · 2376 阅读 · 0 评论 -
实对称矩阵为正定矩阵的一个充分必要条件
本文是为了在学习凸优化的时候遇到的一个问题展开讨论的。目的是能够明白凸优化的理论基础,或者尽可能的明白它的理论基础。1,对称矩阵的特征值是实数。证明如下:(我是用latex编辑的,这里不能显示公式,所以我只能用图片了。上面的证明可以说明对称矩阵的特征值一定是实数!2、n阶方阵一定有n个特征跟(重跟按重数计算)证明:设A是一个n阶的方阵,它的特征多项式是一个关于符号l...转载 2020-03-28 10:58:31 · 5913 阅读 · 0 评论 -
正交矩阵相关定义
说明正交矩阵通过初等变化得到的矩阵的行列式为 +-1原创 2020-03-23 21:46:14 · 1269 阅读 · 0 评论 -
实对称矩阵化的实质之个人理解
由实对称矩阵的性质:说明实对称矩阵进行初等变化得到对角矩阵原创 2020-03-23 21:43:53 · 577 阅读 · 0 评论 -
向量点乘相关公式推导及 几何解释
1.向量点乘公式推导和几何解释01.向量点乘(dot product)是其各个分量乘积的和,公式:用连加号写:02.几何解释:点乘的结果是一个标量,等于向量大小与夹角的cos值的乘积。a•b = |a||b|cosθ如果a和b都是单位向量,那么点乘的结果就是其夹角的cos值。a•b = cosθ03.推导过程:假设a和b都是二维向量,θ1是a与x轴的夹角...转载 2020-03-19 00:12:59 · 8041 阅读 · 0 评论 -
线性代数:通过向量组个数和维数判别向量组线性相关性
一、当向量组 个数大于维数时????个????维向量组成的向量组,当????<????时向量组线性相关对应矩阵????(????)≤????????????(????,????),由????<????,则????(????)<????(向量个数),故向量组线性相关.维数小于个数,线性相关;维数大于个数,不一定(可能线性相关也可能线性无关)二、当向量组 个数等于维数时当向量个数等于向量维数时,向量组线性相关的充要条件是该向量组构成的矩阵????的行列式????=0而向..原创 2020-03-11 15:11:41 · 35790 阅读 · 4 评论 -
线性代数初入门
线性代数•什么是矩阵 •矩阵的转置•矩阵中的基本概念 •矩阵的运算法则 •矩阵的加法 •矩阵的逆•矩阵的乘法 矩阵•矩阵(Matrix)是...原创 2019-04-08 16:55:34 · 745 阅读 · 1 评论