Ubuntu20.04 安装cuda和cudnn

NOTE 专栏收录该内容
29 篇文章 1 订阅

(推荐一个我自己做的普法公众号,大可说法律,有法律方面咨询的可以关注)

Ubuntu20.04系统显卡2080 Ti 安装cuda和cudnn

历经千辛万苦,终于完成第一步,先晒一下结果图:
CUDA 10.2.89

cudnn 版本:7.6.5
在这里插入图片描述本机器配置:
显卡为:GeForce RTX 2080 Ti Rev. A,其它如下:
在这里插入图片描述

安装流程

Ubuntu系统的安装选择最小安装,Ubuntu安装记得设置密码,否则可能导致驱动安装后无法进入桌面。开始安装之前需安装必要的依赖,并更改好源,一般使用清华源。
安装依赖可能使用的命令:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install build-essential

安装流程大致包括:

  • 禁用nouveau
  • Nvidia驱动安装
  • Cuda安装
  • cudnn安装

第一步:禁用nouveau

这步操作是为了禁用系统自带的显卡驱动:

sudo gedit /etc/modprobe.d/blacklist.conf

最后一行添加:

blacklist nouveau
options nouveau modeset=0

保存关闭,执行:

sudo update-initramfs -u

然后重启(切忌不要使用reboot,要使用sudo reboot,否则无效,别问我是怎么知道的,鬼知道我重启了多少次):

sudo reboot

重启,执行,如果没有输出说明禁用成功了,否则解决这一步的问题:

lsmod | grep nouveau

第二步 Nvidia驱动安装

查看机器显卡型号

lshw -numeric -C display

在官网下载程序https://www.geforce.cn/drivers 搜索相应的驱动程序下载,随后开始安装,然后安装时确保自己没有胡乱安装过别的版本的,包括在软件和更新图形界面的操作,总之确保显卡驱动未安装(没错,就是我胡乱安装了别的版本又安装这个版本导致无法开机,重新装了系统)
下载好驱动后,进入所在文件夹后,授权并安装:

sudo chmod a+x NVIDIA-Linux-x86_64-450.57.run
sudo ./NVIDIA-Linux-x86_64-450.57.run --no-opengl-files --no-x-check --no-nouveau-check

–no-opengl-files 只安装驱动文件,不安装OpenGL文件。这个参数最重要

–no-x-check 安装驱动时不检查X服务

–no-nouveau-check 安装驱动时不检查nouveau
至此,驱动安装成功,可执行下面命令检查:

nvidia-smi

执行后有如下显示:
在这里插入图片描述

第三步Cuda安装

从 https://developer.nvidia.com/cuda-toolkit-archive 下载对应版本的cuda,选择10.2的版本即可。
由于Ubuntu20.04自带gcc版本为9.7.0,而Cuda10.2需要添加并切换为gcc7
(之前安装依赖也是为了这一步,如果只安装gcc7,系统会找不到,可能是我安装的问题吧)
安装gcc7

sudo apt install gcc-7 g++-7

查看gcc版本,可以看到目前系统中存在7和9两个版本

ls /usr/bin/gcc*

使用update-alternatives进行版本切换,输入以下命令:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 50
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 100

输入以下命令:

sudo update-alternatives --config gcc

命令查看gcc的默认版本,可以看到当前默认gcc版本为7,即切换成功。
安装cuda

sudo sh ./cuda_10.2.89_440.33.01_linux.run 

点击continue 输入 accept,cuda安装包自带的显卡驱动点掉,因为已经安装过了。然后选择install,
在这里插入图片描述
配置环境变量:

gedit ~/.bashrc

在打开的文件最后添加以下语句并保存:

export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

更新环境变量配置

source ~/.bashrc

至此,cuda安装完成,输入nvcc -V命令查看cuda信息。
在这里插入图片描述

第四步cudnn安装

从 https://developer.nvidia.com/cudnn 下载cuDNN,需要注册登陆,也可以从我的网盘下载, 链接: https://pan.baidu.com/s/1CVFc6GWicpf7hYI9VqcBsw 密码: j927
下载解压:

tar -xvf cudnn-10.2-linux-x64-v7.6.5.32.tgz 

将cuda/include/cudnn.h文件复制到usr/local/cuda/include文件夹,将cuda/lib64/下所有文件复制到/usr/local/cuda/lib64文件夹中,并添加读取权限:

sudo cp ./cuda/lib64/* /usr/local/cuda/lib64
sudo cp ./cuda/include/cudnn.h /usr/local/cuda/include
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

好了,大功告成,输入命令检验:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

验证

找到cuda-install-samples-10.2.sh文件,后面/home/archy是你自己的路径。

/usr/local/cuda-10.2/bin/cuda-install-samples-10.2.sh /home/archy/

结果显示如下:

Copying samples to /home/archy/NVIDIA_CUDA-10.2_Samples now...
Finished copying samples.

在home主目录下,找到/NVIDIA_CUDA-10.2_Samples/1_Utilities/deviceQuery,执行命令make &&./deviceQuery

cd NVIDIA_CUDA-10.2_Samples/1_Utilities/deviceQuery
make  &&./deviceQuery

显示以下结果:


Detected 1 CUDA Capable device(s)

Device 0: "GeForce RTX 2080 Ti"
  CUDA Driver Version / Runtime Version          11.0 / 10.2
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 11011 MBytes (11546329088 bytes)
  (68) Multiprocessors, ( 64) CUDA Cores/MP:     4352 CUDA Cores
  GPU Max Clock rate:                            1635 MHz (1.63 GHz)
  Memory Clock rate:                             7000 Mhz
  Memory Bus Width:                              352-bit
  L2 Cache Size:                                 5767168 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 101 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 10.2, NumDevs = 1
Result = PASS

验证其他例子的时候发现会提示:

#error -- unsupported GNU version! gcc versions later than 8 are not supported!

输入命令查看

 ls /usr/local/cuda/bin/

是否包括gcc 和g++两个文件夹。

bin2c                         cuobjdump                    nvdisasm
computeprof                   fatbinary                    nvlink
crt                           nsight                       nv-nsight-cu
cudafe++                      nsight_ee_plugins_manage.sh  nv-nsight-cu-cli
cuda-gdb                      nsight-sys                   nvprof
cuda-gdbserver                nsys                         nvprune
cuda-install-samples-10.2.sh  nsys-exporter                nvvp
cuda-memcheck                 nvcc                         ptxas
cuda-uninstaller              nvcc.profile

如果向上面一样没有gcc和g++,建立软链接,如下操作:

sudo ln -s /usr/bin/gcc-7 /usr/local/cuda/bin/gcc
sudo ln -s /usr/bin/g++-7 /usr/local/cuda/bin/g++

操作后显示有g++ 和gcc了,如图:

bin2c                         fatbinary                    nvdisasm
computeprof                   g++                          nvlink
crt                           gcc                          nv-nsight-cu
cudafe++                      nsight                       nv-nsight-cu-cli
cuda-gdb                      nsight_ee_plugins_manage.sh  nvprof
cuda-gdbserver                nsight-sys                   nvprune
cuda-install-samples-10.2.sh  nsys                         nvvp
cuda-memcheck                 nsys-exporter                ptxas
cuda-uninstaller              nvcc
cuobjdump                     nvcc.profile

若操作失误,建立错误gcc或g++,使用sudo rm g++删除重新执行上述命令即可。

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏作者

Archy瞬

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值